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Abstract

This paper puts forward a stochastic volatility and stochastic conditional du-

ration with cojumps (SVSDCJ) model to analyze returns and durations. In high

frequency data, transactions are irregularly spaced, and the durations between

transactions carry information about volatility as suggested by the market mi-

crostructure theory. Traditional measures of volatility do not utilize durations. I

adopt a jump diffusion process to model the persistence of intraday volatility and

conditional duration, and their interdependence. The jump component is disen-

tangled from the continuous part of the price, volatility and conditional duration

process. I develop a MCMC algorithm for the inference of irregularly spaced mul-

tivariate process with jumps. The algorithm provides smoothed estimates of the

latent variables such as spot volatility, jump times and jump sizes. I apply this

model to IBM data and I find meaningful relationship between volatility and con-

ditional duration. Also, jumps play an important role in the total variation, but

the jump variation is smaller than traditional measures that use returns sampled

at lower frequency.
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1 Introduction

The recent availability of high frequency data has provided an unprecedented opportu-

nity to look into financial markets at a microscopic level. With this type of data, every

transaction is recorded. For various reasons, it is common to aggregate the individual

trades over a fixed time interval such as five minutes. At this level of aggregation, high

frequency returns exhibit fat tails, volatility clustering, and jumps similar to returns

obtained at lower frequencies. With daily or lower frequency returns, these features

have inspired GARCH and stochastic volatility models to capture the predictability

of volatility. High frequency data has advanced another volatility measure: realized

volatility. This non-parametric estimator uses returns sampled at shorter horizon (such

as 5 minutes) to measure the volatility at a longer horizon (such as a day). The theoret-

ical foundation was laid by Andersen, Bollerslev, Diebold, and Labys (2001), Andersen,

Bollerslev, Diebold, and Labys (2003), Barndorff-Nielsen and Shephard (2001) and

Barndorff-Nielsen and Shephard (2002). Since then, a huge literature has been devoted

to the implementation of this estimator.

Realized volatility measures do not utilize the persistence of volatility or estimate

intraday spot volatility. Also, fixed time aggregation loses potentially valuable infor-

mation, such as the durations between transactions. I propose a jump diffusion process

to model the movement of returns and durations jointly. My stochastic volatility and

stochastic duration with cojumps (SVSDCJ) model helps fill the gap between tradi-

tional stochastic volatility models and irregularly spaced high frequency data. With

this model, I can measure intraday volatility by exploiting the persistence of volatility

as well as the information conveyed in durations. I also disentangle the jump component

with the continuous part and estimate the jump variation.

The asymmetric information models of market microstructure suggest that the du-
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rations between trades provide information to market participants. Both the presence

and the absence of trade impacts price adjustments. In the seminal work of Easley

and O’Hara (1992), a fraction of traders are informed with a signal (news). Informed

traders buy or sell only when they observe a good or bad signal. A long interval be-

tween trades is more likely to occur when no news has occurred. Increased trading

intensity is associated with an information event and increased number of informed

traders (See Dufour and Engle (2000) for an empirical study on how durations impact

the price dynamics). Moreover, one would expect to observe that short durations are

followed by short durations (duration clustering), and periods of high volatility tend to

be grouped (volatility clustering). Their model also implies that long durations have

negative impact on volatility, and vice versa.

Duration clustering has led to a large literature working on the direct modeling

of durations. Following the idea behind GARCH, Engle and Russell (1998) propose

the autocorrelated conditional duration (ACD) model. In their model, the conditional

expected duration depends on past duration, return and other economic variables, such

as volume or bid-ask spread. Bauwens and Giot (2000) suggest modeling the logarithm

of durations. It is more flexible and does not impose parameter restrictions to ensure

that durations are positive. Bauwens and Veredas (2004) put forth the stochastic

conditional duration (SCD) model, which is analogous to the stochastic volatility model.

In the SCD model, the expected duration becomes stochastic; I model durations in a

similar fashion in this paper.

The framework of Easley and O’Hara also predicts interdependence between du-

rations and volatility. Engle (2000) applies ACD models to IBM and examines the

impact of durations on volatility. He imposes exogeneity on the duration process but

allows volatility to be influenced by durations under the GARCH framework. His find-
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ing supports the Easley and O’Hara theory in which short duration leads to higher

volatility, no trade being interpreted as no news. Grammig and Wellner (2002) extend

Engle’s model to analyse the interaction between volatility and duration. In particular,

they consider the impact of volatility on trading intensity. They conclude that lagged

volatility lengthens expected durations. Manganelli (2005) uses a vector autoregressive

(VAR) model to incorporate volume. He allows return and volatility to interact with

durations and volume. He finds that short durations follow large returns, which is in

line with Easley and O’Hara theory, but the result only applies to frequently traded

stocks. Ghysels and Jasiak (1998) note that the class of ACD-GARCH models can

be interpreted as time deformed GARCH diffusion. Their empirical study finds that

volatility has a causal relationship with durations.

Following Zheng and Pelletier (2012), I focus on the stochastic class of volatility and

duration modelling, where the latent volatility and conditional duration reflect unob-

servable information flow. Returns are normally distributed with stochastic volatility

and jumps; durations are exponentially distributed with stochastic conditional dura-

tion. The logarithm of conditional duration and the logarithm of volatility follow a

bivariate Ornstein-Uhlenbeck (OU) process. The OU process is mean reverting and

when discretized, it leads to a VAR model. This specification relies on two insights:

first, volatility and durations are persistent, hence the conditional volatility/duration

will be affected by their own past. Second, as predicted by microstructure theory and

empirically documented by the ACD-GARCH models, volatility and conditional dura-

tion interact with each other. The bivariate OU process allows the expected volatility

and duration to depend on the lagged value as well as correlated shocks. The estimated

spot volatility is a natural supplement to realized volatility: realized volatility measures

the integration of the spot volatility when no jumps are present.
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The presence of jumps is an important feature of financial returns. Merton (1976)

first describes returns using a continuous diffusion process and a Poisson-driven jump

process. Jumps are interpreted as “abnormal” variation in price due to the arrival of

important news. It is important to separate the jump component and the diffusion

component in price because they are two fundamentally different sources of risk. Jump

risk has different hedging possibilities and requires a different premium.

In the high frequency setting, the non-parametric realized volatility has led to a

non-parametric estimator for jump variation. Barndorff-Nielsen (2004) introduce the

idea of realized bipower variation, which is the summation of the cross product of

return. Suppose the price process has both diffusion part and jump part, then the

difference between realized bipower variation and realized volatility is a measure for

the quadratic variation from the jump component. Using this tool, recent literature

has suggested that jumps play an important role in the total variation of price. For

reviews on realized volatility and jumps, see Andersen, Bollerslev, and Diebold (2007)

and Barndorff-Nielsen and Shephard (2005).

I utilize a Merton type jump diffusion process to model price. Jumps in returns

generate infrequent large movements and contribute to the fat tails in the return distri-

bution. Without jumps, volatility needs to be extreme high to explain the occasional

large fluctuations. I also consider jumps in volatility and expected durations. As Er-

aker, Johannes, and Polson (2003) noted, jumps in return don’t affect future returns

while jumps in volatility can produce a period of extreme price movements. Jumps in

expected duration are included to explain the burst in transactions that accompanies

the burst in volatility.

One of the most challenging complications in dealing with high frequency data is the

existence of microstructure noise. Theoretically, the sum of squared return converges
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in probability to quadratic variation when the sampling frequency goes to infinity.

However, the observed price is composed of efficient price and a noise component. Even

if the noise is iid, the return will consist of efficient return and an autocorrelated noise,

and the realized volatility will be a biased estimator of the actual volatility. As the

sampling frequency increases, the noise to signal ratio will get higher as well.

In the realized volatility literature, there are several approaches to deal with the

microstructure noise. The simplest way is to sample sparsely, for example every 5

minutes. One can also determine the sampling frequency by minimizing the mean

squared error, following Russell and Bandi (2004). Bandi and Russell (2006) suggest

using data at different frequencies to separate noise from volatility. Zhang, Mykland,

and Ait-Sahalia (2005) proposed an estimator that utilizes subsampling, averaging and

bias-correction, where the variance of the microstructure noise is estimated through

the variance of returns sampled at the highest frequency. Zhou (1996) and Hansen

and Lunde (2006) use the autocorrelation of returns to construct kernel-based volatility

estimator. Ait-Sahalia, Mykland, and Zhang (2005) show that if the the noise term is

accounted for explicitly, sampling as often as possible is optimal.

My approach in dealing microstructure noise combines several different methods.

First, I model noise terms explicitly. Noise is treated as a latent variable and it is

estimated in the model. Second, I sample from every Lth transaction. This sampling

scheme is referred to as transaction time sampling (Oomen (2006)) or tick time sampling

(Hansen and Lunde (2006)) in the realized volatility literature. Third, the autocovari-

ance of tick-by-tick returns serves as a measure of the variance of noise. This combined

approach is unique to the estimation procedure I adopt and it allows sampling at finer

grid than current parametric models.

Estimating stochastic volatility model usually involves approximation. Jacquier,
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Polson, and Rossi (1994) introduced Bayesian Markov Chain Monte Carlo (MCMC)

methods which allows for exact finite sample inference. Eraker, Johannes, and Polson

(2003) use MCMC to analyse the impact of jumps in returns and volatility. I resort

to MCMC for the estimation of the parameters and latent variables. My model can

be viewed as a nonlinear state space model in which volatility, conditional durations,

and jumps are the state variables. The observation equation describes how returns

and durations change given state variables, and the evolution equation is the dynamics

of state variables. One major benefit of using MCMC is that both parameters and

state variables are estimated simultaneously instead of using filtering technique ad hoc.

The estimated conditional volatility and jumps are very useful in applications such as

Value at Risk. Another benefit of MCMC is that I can incorporate prior information

properly. For example, the noise variance estimated from the tick-by-tick returns can

be used to form an informative prior. Also, if jumps are interpreted as infrequent and

large movements, I can use appropriate prior to elicit such beliefs.

The rest of this paper is organized as follows. In section 2 I describe the model

specification. Section 3 discuss the Bayesian inference and simulation studies. Section

4 presents the empirical results using IBM data. Section 5 concludes.

2 Model Specification

2.1 Setup

I start by assuming that the logarithmic asset price y
t

follows the jump diffusion process

dy

t

= µ

y

dt+

p
V

t

dW

y

t

+ ⇠

y

t

dN

y

t

, (1)
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where V

t

is the latent spot volatility which follows a separate stochastic process, and

W

y

t

denotes a standard Brownian Motion. For simplicity, I assume that V
t

and W

y

t

are

independent. Jumps follow a compound Poisson process since we’re interested in large

and infrequent price movements. Jump arrivals are assumed to be state independent,

i.e., the jump intensity � is constant. Given a time interval �, the probability of

observing n jumps is e

���
(��)

n

/n!. Jump sizes ⇠

y

t

are also random.

The duration D

i+1 is defined as the time interval between an event that occurred at

t

i

and the next event at t

i+1. In my application, I’m sampling every Lth transaction;

the event is defined as L transactions. For example, if L = 100, D
i+1 measures the

time it takes to observe 100 transactions. Let �
ti denote the conditional expectation of

D

i+1 given information set available at t

i

, E(D

i+1|Iti) = �

ti . Following most financial

duration models, D

i+1 is modeled as �

ti times a i.i.d random variable with positive

support, i.e., D
i+1 = �

tiei. I assume an exponential distribution for e
t

in this paper. It

is noted that my model can be easily extended to accommodate other distributions.

To create persistence and interdependence between volatility and duration, I follow

Zheng and Pelletier (2012) and model the logarithm of �
t

and V

t

using a bivariate OU

process. As noted by Andersen, Bollerslev, Diebold, and Ebens (2001), the logarithmic

volatility are closer to being normal than the raw volatility. Also, modelling logarithmic

volatility and duration has the benefit of imposing non-negativity without putting extra

constraint on parameters. To explain a prolonged effect from news, I consider adding

a Poisson jump component to the Gaussian OU process. Let X

t

= (log(V

t

), log(�

t

))

0,

X

t

solves:

dX

t

= � (X
t

� µ

x

)dt+ S

x

dW

x

t

+ ⇠

x

t

dN

x

t

, (2)

where  is a 2⇥ 2 matrix that measures the mean reversion and dependence between
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conditional duration and volatility. The OU process mean reverts to µ

x, the diffu-

sive long-run mean. S

x

measures the variation of the logarithmic volatility and the

logarithmic duration, and S

x

= diag(�

v

, �

�

). W

x

t

is a Brownian motion in R2 with

dW

v

t

dW

�

t

= ⇢dt, where ⇢ is the instantaneous correlation. The instantaneous covari-

ance matrix is given by

⌃

x

= S

x

0

B@
1 ⇢

⇢ 1

1

CAS

x

=

0

B@
�

2
v

⇢�

v

�

�

⇢�

v

�

�

�

2
�

1

CA .

N

x

t

is a Poisson process in R2, Nx

t

= (N

v

t

, N

y

t

)

0. Jumps are interpreted as unexpected

important news, and when a jump occurs, it occurs to price, volatility and conditional

durations. In other words, I model jumps with contemporaneous arrivals, Ny

t

= N

v

t

=

N

�

t

. This type of jumps is referred to as cojumps. Since cojumps reflect impacts

from the same news, the jump sizes in returns, volatility and conditional durations are

correlated. Let ⇠
t

denote the vector of jump sizes in returns, volatility and conditional

duration, ⇠
t

= (⇠

y

t

, ⇠

v

t

, ⇠

�

t

)

0
, we specify a multivariate normal distribution for ⇠

t

:

⇠

t

⇠ N(µ

J

,⌃

J

). (3)

Jumps in volatility account for the rapid increases in volatility that have been observed

in financial markets. The persistence of volatility also allows periods of large price

movement before volatility reverts to its diffusive long-run mean. Jumps in conditional

duration explain the rapid change in trading intensity associated with the rapid change

in volatility.

The continuous time framework allows straightforward discretization of the model

over unequally spaced data. Using an Euler approximation, I discretize dy

t

over the
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durations:

y

i+1 � y

i

= r

e

i+1 = µ

y

D

i+1 +
p
V

t

D

i+1✏
y

i+1 + ⇠

y

i+1Ji+1, (4)

where the subscript i denotes the time of ith event, t
i

. Jumps are assumed to be rare,

� is close to zero, so the probability of observing no jumps in the time interval D
i+1

can be approximated by 1 � �D

i+1. Furthermore, there is at most one jump in D

i+1,

with Pr(J

i+1 = 1|�) = �D

i+1. Hence, J
i+1 is referred to as jump indicator.

The efficient log price process y

t

is unobservable in high frequency financial data

due to market frictions. The observed logarithmic price is the sum of the logarithmic

efficient price and market microstructure noise,

y

o

i

= y

i

+m

i

. (5)

I assume that microstructure noise is i.i.d mean zero and normal, m
i

⇠ N(0, �

2
m

), and

that the microstructure noise is independent of the efficient price. The observed return

has a MA(1) contamination:

r

o

i+1 = y

o

i+1 � y

o

i

= r

e

i+1 +m

i+1 �m

i

. (6)

The logarithmic volatility and conditional duration X

t

is discretized using the exact

solution of OU process with jumps (See Section 2.2 for descriptions of the solution).

Equation (4), (6), and the time discretization of X
t

over durations form the SVSDCJ

model:

r

o

i+1 = µ

y

D

i+1 +
p

V

i

D

i+1✏
y

i+1 + ⇠

y

i+1Ji+1 +m

i+1 �m

i

X

i+1 = (I2 � e

� Di+1
)µ

x

+ e

� Di+1
X

i

+ ⇠

x

i+1Ji+1 + U

i+1, (7)
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where

U

i+1 ⇠ N(0,⌃

i+1)

vec(⌃

i+1) = ( � )�1
(I2 � e

�( � )Di+1
)vec(⌃

x

).

2.2 Properties

The exact solution to the SDE (2) is given by

X

t

= (I2 � e

� t
)µ

x

+ e

� t
X0 + U

t

+ Z

t

,

where Z

t

=

P
Nt

j=0 e
� (t�⌧j)

⇠

x

⌧j
(See Kloeden and Platen (1992); Ross (1996)). Assuming

that there is at most one jump in D

i+1 with jump probability �D

i+1, we would arrive

at the discretize version in (7). Note that the long-run or unconditional mean of X
t

is no longer µ

x in the presence of jumps. Under the assumption of contemporaneous

jump arrivals and constant intensity, the long-run mean and variance of X
t

is given by

E(X

t

) = µ

x

+ � 

�1
µ

x

J

vec(V ar(X

t

)) = ( � )�1
⇣
vec (⌃

X

) + �vec

⇣
(µ

x

J

) (µ

x

J

)

0
+ ⌃

x

J

⌘⌘
. (8)

To ensure the existence of a stationary solution, it is necessary that  has only

eigenvalues with positive real parts so that e

� t ! 0 as t ! 0 (See Gardiner (2009)).

I discuss two important subsets of the parameter space. First, if  11 > 0,  22 > 0,

 12 and  21 have the same sign, and det( ) > 0, then all the eigenvalues of  will

be real and positive. In this case, the system reverts to its diffusive mean following

an exponential decay. This encompass the case when  is diagonal and the diagonal

elements are positive. Second, if  11 > 0,  22 > 0,  12 and  21 has opposite sign, and
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( 11� 22)
2
< �4 12 21, the eigenvalues of  have positive real parts with imaginary

parts, and the the system oscillates to the diffusive mean.

I use a Euler discretization for X

t

without jumps to gain some insight about the

parameters:

X

i+1 =  µ
x

D

i+1 + (I2 � Di+1)Xi

+ ⌃

1/2
x

p
D

i+1✏
x

i+1,

rearranging,

0

B@
log V

i+1 � µ

v

log �

i+1 � µ

�

1

CA =

0

B@
1� 11Di+1 � 12Di+1

� 21Di+1 1� 22Di+1

1

CA

0

B@
log V

i

� µ

v

log �

i

� µ

�

1

CA+⌃

1
2
x

p
D

i+1✏
x

i+1.

The persistence in the logarithmic volatility and conditional duration are measured

by  11 and  22, respectively. If  11 are positive and close to zero, volatility is highly

persistent and the speed of mean-reversion is low.  12 is the feedback effect from

conditional duration to volatility. If  12 is positive, longer duration will lead to lower

volatility, and vice versa.  21 is the impact of lagged volatility on duration. If  21

is positive, high volatility will have a negative impact on expected duration. The

instantaneous correlation between volatility and expected duration is measured by ⇢.

Easley and O’Hara theory predicts positive value for  12 and  21, and a negative value

for ⇢.

Todorov and Tauchen (2011) find strong evidence of cojumps in volatility and price

using a nonparametric framework. They also find that almost all of the common jumps

in price and volatility occur in opposite directions. In particular, a negative price jump

is usually associated with a positive jump in volatility. This dependence suggests jumps

are an important source for leverage effect. To accommodate this correlation, I assume
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the following covariance matrix for jumps sizes:

⌃

J

=

0

BBBB@

�

2
J,y

⇢

yv

�

J,y

�

J,v

⇢

yd

�

J,y

�

J,d

⇢

yv

�

J,y

�

J,v

�

2
J,v

⇢

vd

�

J,v

�

J,d

⇢

yd

�

J,y

�

J,d

⇢

vd

�

J,d

�

J,v

�

2
J,d

1

CCCCA

If a negative price jump is correlated with increased volatility, ⇢
yv

should be negative.

The dependence between price jumps and the jumps in expected duration is measured

by ⇢

yd

. If it’s positive, it indicates that negative price jump leads to shorter durations

between trades. Lastly, ⇢
vd

is the correlation of jumps sizes in volatility and expected

duration. It is expected to have the same sign as the correlation between volatility and

expected durations ⇢.

3 Bayesian Inference

The model can be considered as a non-linear non-Gaussian state space model. Let

Y, ⇥ and Z denote the observables, parameters and state variables respectively. The

observables, parameters and state variables in my model are:

Y = {y
i

, D

i

}N
i=1

⇥ = { , µx

,⌃

x

, µ

J

,⌃

J

, �, �

2
m

}

Z = {V
i

,�

i

, ⇠

y

i

, ⇠

x

i

, J

i

,m

i

}N
i=1

Traditional likelihood based estimation requires evaluating the marginal likelihood

p(Y |⇥). However, computation of p(Y |⇥) involves integrating out the latent time-

varying variables Z, and this high dimensional integration is usually intractable. One

solution is to employ a linear and Gaussian approximation and use Kalman Filter to
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obtain the likelihood. This method produces a Quasi Maximum Likelihood estimator.

In a standard stochastic volatility model, the adequacy of the approximation depends

on the variation of volatility (Harvey, Ruiz, and Shephard (1994), Jacquier, Polson, and

Rossi (1994) and Harvey and Shephard (1996)). The latent volatility and conditional

durations in my model exhibit time varying variation. Also, in the presence of jumps

and microstructure noise, logarithmic squared returns do not have a linear state space

representation. Hence, I adopt a Bayesian MCMC algorithm consisting of Gibbs and

Metropolis-Hastings sampler for the estimation.

Bayesian inference in a state space model focuses on the marginal posterior dis-

tribution p(⇥|Y ) and p(Z|Y ). The key feature of Gibbs sampler is that if we draw

G random samples {⇥(g)
, Z

(g)}G
g=1 from their conditional distributions p(⇥|Y, Z) and

p(Z|⇥, Y ) sequentially, then{⇥(g)}G
g=1 and {Z(g)}G

g=1 converges to the marginal distri-

butions of interest as G ! 1. The conditional posterior p(Z|Y,⇥) updates the prior

distribution p(Z|⇥) with information from the augmented likelihood p(Y |⇥, Z). If ⇥

or Z consists more than one elements and they can not be updated in one block, I

divide them into blocks where conditionals are available. I also combine Metropolis-

Hastings steps in the algorithm if conditional distributions cannot be sampled directly.

With sufficiently large draws {⇥(g)}G
g=1 and {Z(g)}G

g=1, a commonly used point esti-

mate is simply the sample mean after discarding the first K draws for burning in,

i.e., ˆ

⇥ ⇡ 1
G�K

P
G

g=K+1⇥
(g) and ˆ

Z

i

=

1
G�K

P
G

g=K+1 Z
(g)
i

. For an overview of MCMC

methods in finance, see Johannes and Polson (2002).

I outline the algorithm as follows:

1. Initialize Z

(0) and ⇥(0).

2. Sample {V
i

} and {�
i

} .

3. Sample {⇠
i

} and {J
i

} .
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4. Sample {m
i

}.

5. Sample  , µx and ⌃
x

.

6. Sample µ

J

and ⌃
J

.

7. Sample �.

8. Sample �

2
m

.

The priors for parameters are explained at section 3.1. Section 3.2 describes how to

update the state variables. Section 3.3 explains the posteriors of parameters. For a full

description of the updating procedures, see the Appendix.

3.1 Priors

Bayesian analysis requires the formulation of prior distributions. First, I choose a prior

for  to ensure that the OU process stays in the stationary region. Other than imposing

stationarity, the prior is diffuse. Specifically, I choose a truncated multivariate normal

with large variance. Second, the prior for � and ⌃
J

reflects our belief that jumps are

large and infrequent. Jump intensity � is restricted in the region where �D doesn’t

exceed one.

Third, I use returns sampled at the highest frequency to form an informative prior

for �2
m

. Efficient price has independent increments, but the observed tick-by-tick return

has significant negative autocorrelation. Suppose observed price is composed of efficient

price and uncorrelated noise m

i

, observed return is composed of independent efficient

returns and an MA(1) noise. In other words, the autocorrelation of tick time return is

induced by the microstructure noise and I can use the first-order autocovariance as a

measure of �2
m

. Under the assumption of uncorrelated noise, �̂2
m

= �⌃N�1
i=1 r

i

r

i+1/N . I
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specify an inverse Gamma prior for �

2
m

such that the prior mean is equal to �̂

2
m

. The

posterior mean E(�

2
m

|m) is a weighted average between prior mean and variance of m
i

.

I use returns sampled from every Lth transaction to estimate the model, and I choose

the weight of prior, or how tight/informative the prior is, according to L. The larger L

is, the more sparse we are sampling, the more informative prior is.

Last, I choose uninformative and conjugate prior for µ

x and µ

J

since there is no

prior belief about their value. There is no conjugate prior for ⌃
x

; I specify a diffuse

inverse Wishart prior.

3.2 Posteriors of State variables

I update each state variable sequentially using their posterior distributions. First, I

decompose the joint posterior of X into univariate conditionals and update each element

one at a time. Specifically, I break p(X|r,D,⇥, Z�X

) into p(V

i

|V�i

,�, r

i+1,⇥, Z�X

) and

p(�

i

|��i

, V,D

i+1,⇥, Z�X

) for i = 1, ..., N , where V�i

denotes the vector of V expect V
i

,

and ��i

denotes the vector of � expect �

i

. Using Bayes rule, the posterior for V

i

is

given by

p(V

i

|rest) / 1

V

i

p(X

i+1|Xi

, D

i+1,⇥, Z�X

)p(X

i

|X
i�1, Di

, r

i+1,⇥, Z�X

)p(r

i+1|Vi

,⇥, Z�X

).

The posterior is not a standard distribution, hence the adoption of independent Metropolis-

Hastings algorithm. Let ⇡(V
i

) denote p(V
i

|rest), the target density, I draw V

i

from q(V

i

),

the proposal density, then accept the draw with probability ↵ where

↵ = min

(
⇡(V

(g+1)
i

)q(V

(g)
i

)

⇡(V

(g)
i

)q(V

(g+1)
i

)

, 1

)
.
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To find a proposal density, notice that the target density has a lognormal kernel from

the evolution equation and a inverse gamma kernel from the observation equation.

Following Jacquier, Polson, and Rossi (1994), I choose an inverse gamma distribution

to approximate the lognormal kernel and combine it with the other inverse gamma

kernel. The updating of �
i

follows the same procedure.

The conditional posteriors of J
i

is Bernoulli with J

i

= 1 indicating a jump arrival. I

update J following the algorithm in Eraker, Johannes, and Polson (2003). Jumps sizes

⇠

i

have a multivariate normal posterior conditional on J, X, m, ⇥ and Y .

Last, define ř

i+1 = r

i+1 �
�
µ

y

D

i+1 + ⇠

y

i+1Ji+1

�
, the posterior of m

i

can be simplified

to p(m

i

|m�i

, ř, �

2
m

), and drawn directly.

3.3 Posteriors of Parameters

From a Bayesian perspective, models with latent variables have a hierarchical structure.

In other words, the conditional distribution of parameters governing the evolution of

latent variables only depend on the latent variables. For example, I draw  , ⌃
x

and µ

x

sequentially from p( |µx

, ⌃

x

, Z), p(⌃
x

|µx

,  , Z) and p(µ

x| , ⌃
x

, Z). The posterior of

 can not be sampled from directly, so I adopt an independent Metropolis-Hastings step

with a proposal density derived from the Euler discretization of X. To ensure that the

proposal density bounds the tails of the target density,  is drawn from a multivariate

t distribution rather than Normal. ⌃
x

has a posterior that is well approximated by an

Inverse Wishart Distribution, and I use Metropolis-Hasting algorithm to update it. µx

has conjugate multivariate normal distribution and it can be drawn directly.

The conditional distribution of µ

J

and ⌃
J

only depend on ⇠ and J . Since ⇠ are

normal, the posterior of µ
J

and ⌃
J

can be derived from standard linear models. Condi-

tional on J , the posterior of � is independent from other state variables and parameters.
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The posterior of � is sampled using a Metropolis-Hastings step. The posterior of �2
m

does not depend on Y or state variables other than m, i.e., p(�2
m

|rest) = p(�

2
m

|m). It

has an inverse gamma kernel.

4 Simulation Studies

I use simulation studies to demonstrate the reliability of my estimation procedure.

The simulated sample size is 5000. The posterior mean and the standard deviation is

reported in Table 1.

Table 1: Parameter Inference using Simulated data.
True value SVSDCJ

 11 0.009 0.0109 (0.0021)
 21 0.002 0.0003 (0.0017)
 12 0.003 0.0036 (0.0023)
 22 0.006 0.0068 (0.0014)
µ

v -8.8 -8.7874 (0.0565)
µ

d 2.0 1.9134 (0.0521)
⌃11 0.0036 0.0052 (0.0013)
⌃12 -0.0006 -0.0006 (0.0007)
⌃22 0.0025 0.0029 (0.0005)
µ

J,r

-0.1 -0.0913 (0.0799)
µ

J,v

0.7 0.7071 (0.3306)
µ

J,d

-0.4 -0.3801 (0.2232)
⌃

J

11 0.04 0.0526 (0.0294)
⌃

J

12 -0.06 -0.0032 (0.0632)
⌃

J

22 0.36 0.1764 (0.1611)
⌃

J

13 0.006 -0.0402 (0.0417)
⌃

J

23 -0.09 -0.0528 (0.0874)
⌃

J

33 0.09 0.0895 (0.0851)
� 0.0005 0.0004 (0.0002)
�

m

0.01 0.0099 (0.0002)
Note: This table reports the posterior mean and the standard deviation of the posterior
(in parentheses). I run 20000 iterations and discard the first 1000 draws for burning in.

Formal test of the consistency of the posterior simulator can be employed following
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the method proposed in Geweke (2004).

5 Empirical Results

5.1 Data

I apply my model to the milli-second time stamped IBM trade data in the US Equity

Data provided by tickdata. The sample period is September 2011 (21 trading days).

I follow the cleaning procedure proposed by Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2009) to filter out the potentially erroneous data. First, entries with correc-

tion indicator other than 0 are deleted. Second, I delete entries with abnormal sales

condition. (See the TAQ manual for a complete reference on the correction indicator

and sales condition). Third, observations from outside of the normal opening time are

omitted. Fourth, I delete entries from the first five minutes after opening to eliminate

the price changes due to information accumulated overnight. Last, I treat entries with

the same time stamp as one observation and use the mean price.
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Figure 1: The dependence between duration and squared return.
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Intraday returns can be constructed using different sampling schemes. First, I use a

fixed five-minute sampling frequency to illustrate the motivation for modeling volatility

and duration jointly. Figure 1 depicts the squared five-minute returns versus five-minute

average duration, where the average durations are computed by counting the number

of trades in the five-minute sampling period. The dependence between squared returns

(proxy for volatility) and durations (proxy for conditional durations) is evident.

To preserve the information from durations and mitigate the effect of market mi-

crostructure noise, I sample from every Lth transaction rather than using tick-by-tick

data. At ultra high frequency, unconditional returns display very high kurtosis. Under

the assumption that returns are conditionally normal mixed with Poisson jumps, it is

hard to produce such high kurtosis. Also, the discreteness of return is a predominant

feature in tick-by-tick data since price changes has to be multiples of 1 cent (See Rus-

sell and Engle (2005)). The discreteness of durations induces measurement error as

well. Moreover, this measurement error would affect shorter durations/smaller returns

more than the longer durations/larger returns and hence biase the estimation. Another

problem in tick time is that the microstructure noise is autocorrelated (See Hansen and

Lunde (2006)). The time dependence of noise becomes negligible as sampling frequency

decreases. Considering these factors, I choose L to be 100, leaving 6038 observations

after. At this frequency, the mean duration is about 78 seconds. Although a large

portion of data is tossed out, assumptions underlying my model are better met and this

allows a more reliable estimation.

Intraday volatility and duration have well known diurnal patterns. Transactions

happen more frequently near the opening time and closing time, and less frequently

during the middle of a day. Before I apply the data to the stochastic model, this

deterministic diurnal pattern needs to be filtered out. Durations are adjusted using
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D

a

i

= D

i

/gd

i

, where D

a

i

is the adjusted duration, D
i

is the original duration, and gd

i

is the diurnal effect at time t

i

. A nonparametric estimate of gd
i

is obtained using a

Normal kernel on the five-minute average durations. The level of the diurnal pattern

has to be specified, otherwise the mean of conditional durations will be unidentified.

I set gd

i

at a level such that the mean of gd
i

equals to one. Returns also need to be

adjusted to account for the diurnal effect in duration and volatility. Diurnal volatility

gv

i

is obtained from using the Normal kernel on five-minute average squared returns.

Adjusted return r

a

i

is equal to r

i

/

p
gd

i

gv

i�1. The diurnal pattern gd

i

and gv

i

are

plotted in Figure 2. Summary statistics for the adjusted returns and durations are

given in Table 2.
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Figure 2: Nonparametric estimate of Diurnal Pattern.

Table 2: Summary statistics for adjusted IBM returns and durations.
Mean Std Autocorrelation

r

a 0.00038 0.09421 0.01483
D

a 78.276 37.377 0.54025
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5.2 Estimation

The posterior mean of the parameters for SVSDCJ model are given in Table 3. For

comparison, I also estimate two nested models: stochastic volatility and stochastic du-

ration with jumps in return (SVSDJ), and stochastic volatility and stochastic duration

model (SVSD). Parameters for SVSDJ and SVSD are presented in the second and third

column of Table 3.

Table 3: Parameter Inference
SVSDCJ SVSDJ SVSD

 11 0.0009 (0.0002) 0.0004 (0.0001) 0.0012 (0.0002)
 21 0.0002 (0.0002) 0.0001 (0.0000) 0.0000 (0.0000)
 12 0.0014 (0.0007) 0.0005 (0.0002) 0.0011 (0.0003)
 22 0.0013 (0.0003) 0.0003 (0.0001) 0.0004 (0.0001)
µ

v -9.3528 (0.0787) -9.1931 (0.0885) -9.1919 (0.0575)
µ

d 4.5818 (0.0579) 4.6221 (0.0625) 4.5343 (0.0830)
⌃11 0.0006 (0.0001) 0.0004 (0.00005) 0.00142 (0.00025)
⌃12 -2.29e-005 (7.17e-006) 1.66e-005 (1.02e-005) -1.58e-005 (1.87e-005)
⌃22 6.45e-006 (1.41e-006) 4.58e-006 (8.73e-007) 7.38e-006 (1.59e-006)
µ

J,r

0.0406 (0.0399) 0.0086 (0.0142)
µ

J,v

1.0130 (0.2044)
µ

J,d

-0.0016 (0.0322)
⌃11 0.0273 (0.0087) 0.0154 (0.00332)
⌃

J

12 -0.0105 (0.0222)
⌃

J

22 0.2602 (0.1375)
⌃

J

13 0.0019 (0.0064)
⌃

J

23 0.0114 (0.0197)
⌃

J

33 0.0283 (0.0104)
� 0.0001 (0.0000) 0.0005 (0.0002)
�

m

0.0093 (0.0003) 0.0092 (0.0003) 0.0092 (0.0003)
Note: This table reports the posterior mean and the standard deviation of the

posterior (in parentheses). I run 6000 iterations and discard the first 1000 draws for
burning in.
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The posterior mean of  11 in the SVSDJ model is the smallest among three models.

Along with the smallest ⌃11 estimate, it produces the most persistent spot volatility,

as shown in Figure 3. The spot volatility estimates is obtained from the posterior

mean of the draws of V

i

. The volatility process in the SVSD model is expected to

be less persistent and more volatile since all the variation in returns is attributed to

volatility. This is confirmed by the larger  11 and ⌃11 estimates, and also the volatility

estimates in Figure 3. The SVSDCJ model allows cojumps in returns and volatility,

so the volatility process has less variation in the diffusive part (smaller ⌃11) and mean

reverts more slowly (smaller  11) than what the SVSD model suggests. The estimated

spot volatility for the SVSD model is presented in the bottom panel of Figure 3. The

diffusive mean of the volatility process µ

v

is smaller in the SVSDCJ model than the

SVSDJ or SVSD model. This is consistent with the large positive jumps I find in the

volatility process.

I use QQ-plot of the return residuals to assess the specification of the models. First,

I plot the standardized unconditional returns in the top left panel in Figure 4. The

distribution of unconditional returns is clearly not normal and it exhibits high kurtosis.

The residuals in the SVSDCJ model are given by

r

a

i+1 � ⇠

y

i+1Ji+1 �m

i+1 +m

ip
V

i

D

a

i+1

where the state variables are estimated from their posterior mean. If the model is cor-

rectly specified, the residuals should be approximately normally distributed. From the

bottom right panel in Figure 4, SVSDCJ model shows no clear sign of misspecification.

Bottom left panel in Figure 4 is the QQ-plot of residuals in the SVSDJ model. The

residuals show signs of thin tails, indicating that the jumps could be overstated in this

model. This also explains the smooth volatility path in Figure 3: since large move-
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ments of returns are attributed to jumps, variation of volatility is small. Residuals in

the SVSD model have fat tails. Jumps or leptokurtic distributions are needed to cap-

ture the conditional nonnomalities in returns. These results are consistent with what

Eraker, Johannes, and Polson (2003) find using daily level data.
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Figure 3: Estimated spot volatility. The estimate is obtained from the posterior mean
(average of draws after burning in).

The estimated conditional duration �

i

is presented in Figure 5. Jumps in return

does not have a direct impact on the duration process, hence the duration process in

the SVSD model and SVSDJ model have similar dynamics. SVSDCJ model has a

less persistent conditional duration path (larger  22). The duration residuals in all

three models exhibit underdispersion, indicating the need for a more flexible duration

24



−4 −2 0 2 4
−4

−2

0

2

4

Standard Normal Quantiles

Q
u
a
n
til

e
s 

o
f 
In

p
u
t 
S

a
m

p
le

SVSDJ

−4 −2 0 2 4
−6

−4

−2

0

2

4

Standard Normal Quantiles

Q
u
a
n
til

e
s 

o
f 
In

p
u
t 
S

a
m

p
le

SVSDCJ

−4 −2 0 2 4
−4

−2

0

2

4

6

Standard Normal Quantiles

Q
u
a
n
til

e
s 

o
f 
In

p
u
t 
S

a
m

p
le

SVSD

−4 −2 0 2 4
−15

−10

−5

0

5

10

15

Standard Normal Quantiles

Q
u
a
n
til

e
s 

o
f 
In

p
u
t 
S

a
m

p
le

Raw Returns

Figure 4: QQ plots of the return residuals.

distribution.

The off diagonal element of  and ⌃ measures the interdependence between volatil-

ity and duration process. My findings are consistent with the Easley and O’Hara

theory: both the presence and the lack of trade convey information about volatility.

The positive posterior mean of  12 and  21 suggests that high volatility leads to short

conditional duration, and short conditional duration leads to high volatility. Also, since

they have the same sign, the system reverts to its diffusive mean following an expo-

nential decay. ⌃12 is negative, hence the contemporaneous correlation between the two
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Figure 5: Estimated conditional duration. The estimate is obtained from the posterior
mean (average of draws after burning in).

Brownian motion W

v

t

and W

�

t

is negative. In other words, short conditional duration

is accompanies by high volatility.

Figure 6 depicts the estimated jump sizes in returns from the SVSDCJ and SVSDJ

model. More jumps are identified in the SVSDJ model than the SVSDCJ model. Given

the evidence in the QQ-plot, some of the jumps in the SVSDJ model might be spurious.

The estimated jump intensity � is also higher in the SVSDJ model. Jumps in volatility

reduce the need for jumps in returns as expected. The correlation between jump sizes

in return and jump sizes in volatility provides source for leverage effect. The estimated

correlation is negative as indicated by the sign of ⌃
J

(2, 1), but it’s not significantly
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different from zero. Other correlations between jump sizes are not significant either.

Considering that jumps are rare and latent, I would need larger samples to estimate

the correlation.
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Figure 6: Estimated jumps.

I compare the estimated volatility and jumps to the popularly utilized bipower varia-

tion and jump variation. To get estimated integrated volatility in one day, I take the sum

of the spot volatility multiplied by the duration, i.e., cIV
t

=

P
i2day(t) Vi

D

i+1. Bipower

variation is constructed using five-minute returns, BV

t

= µ

�2
1

P1/�
j=2 |rt+j�||rr+(j�1)�|,

where � = 1/78 and µ1 =

p
2/⇡. The estimated integrated volatility and bipower

variation are plotted in Figure 7. They show similar pattern, with EIV lying slightly

above in most days.

In the realized volatility literature, jump variation is measured by the difference

between realized volatility and bipower variation. Realized volatility is computed

using five-minute returns, RV

t

=

P1/�
j=1 r

2
t+j�. The difference can be negative with

finite �, so the empirical measure of jump variation is truncated at zero, JV

t

=

max (RV

t

� BV

t

, 0). When � ! 0, JV

t

converges to the quadratic variation due to
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Figure 7: Estimated daily integrated volatility and realized bipower variation.

jumps, JV
t

!
P

t<s<t+1 ⇠
2
(s). Define dIJV

t

=

P
i2day(t) ⇠

2
i

J

i

, if my model is correctly

specified, dIJV
t

and JV

t

should converge to the same value. I plot the dIJV
t

and JV

t

in

each day in Figure 8. JV
t

is a lot larger than d
IJV

t

in most days. This is not surprising

since I’m looking at returns sampled at a finer grid. As noted by Christensen, Oomen,

and Podolskij (2011), jump variation based on coarser data tend to attribute a burst

in volatility to jumps in return. Figure 9 depicts the logarithmic price in the day when

the JV

t

is the highest in the sample period. Top panel presents the logarithmic price

every five minutes. There are severe price changes that are close to one percent. In a

five-minute period, these are rare and might be considered as jumps. However, if we

look at the bottom panel, where prices are plotted every 100th trade, there’s no clear

indication of large discrete price movement.

The proportion of variation due to jumps can be computed by

P
t

d
IJV

tP
t

c
IV

t

+

P
t

d
IJV

t
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Figure 8: Estimated daily IJV and JV.

In the sample periods, 0.8% of the total variation is from jumps. The sample period is

one month and it does not cover well known periods of market stress, so the estimated

proportion doesn’t serve as an indication of the magnitude of jump variation. However,

using realized volatility, jump variation accounts for 7.8% of the total variation.

6 Conclusion

This paper puts forward a jump diffusion model SVSDCJ to jointly model the volatility

and conditional duration process. Market microstructure theory suggests that durations

between trades provide information to market participants, so volatility and durations

are interdependent. My model analyses the interdependence and utilize this relation-

ship to gain information about volatility. Given the nature of durations, observations

are irregularly spaced. I develop MCMC algorithm for the inference of irregular spaced

multivariate process. The algorithm provides smoothed estimates of the latent vari-

ables, such as spot volatility, jump times and jump sizes. Spot volatility can be easily
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Figure 9: Logarithmic price on September 14th, the day with highest jump variation.
Top panel is sampled at every 5 minutes. Bottom Panel is sampled at every 100th
trade.

converted to integrated volatility in a given horizon. Knowing when jumps happen and

how large the jumps are help us understand jump dynamics and price jump risk.

Applications to IBM data using my model and two nested alternatives reveal a

few insights into the behavior of high frequency returns. First, jumps are important.

Without jumps, stochastic volatility cannot fully capture the fat tails in the condi-

tional distribution of returns. Second, cojump is a better specification than price jump.

Jumps in volatility allow returns to change rapidly for a period of time. In addition,

cojumps reduce the risk of overstating jumps. Third, total variation due to price jumps

becomes smaller as I use finer returns. Last, volatility and conditional durations are

interdependent, and it is consistent with what the Easley and O’Hara theory predicts.
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Appendix: MCMC algorithm for SVSDCJ model

The full conditional posteriors in the MCMC algorithm are provided here:

1. Notations:

�

i+1 = e

� Di+1

µ

i+1 = (I2 � e

� Di+1
)µ

x

+ e

� Di+1
X

i

ř
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o

i+1 � ⇠
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Approximate the first half, a lognormal distribution, with an inverse gamma dis-

tribution, and combine it with the second half, we have the following Inverse

31



Gamma proposal distribution:

q(V

i
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↵ = min

(
f(V

(g+1)
i

)q(V

(g)
i

)

f(V

(g)
i

)q(V

(g+1)
i+1 )

, 1

)
.

The updating of �
i

follows the same procedure:

p(�

i

|rest) / 1

�

i

exp

 
�(log�

i

� µ

�i

)

2

2�

2
�i

!
1

�

i

exp

✓
�D

i+1

�

i

◆

µ

�i

= µ

⇤
i,1 +

⌃

⇤
i

(1, 2)

⌃

⇤
i

(1, 1)

�
logV

i

� µ

⇤
i,1

�

�

2
�i

= (�

⇤
2)

2 � (⌃

⇤
i

(1, 2))

2

⌃

⇤
i

(1, 1)

Proposal density:

q(�

i

) ⇠ IG(d1 + 1, d2 +D

i+1)

d1 =
1� 2exp(�

2
�i

)

1� exp(�

2
�i

)

d2 = (d1 � 1)exp(µ

�i

+ 0.5�

2
�i

)

generate �

i

from the proposal density, then accept it using Metropolis-Hastings

principle.
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3. Updating jump times J :

p(J

i+1 = 1|rest)

/exp

0

B@�1

2

0

B@
r̂

i+1 � ⇠

y

i+1

ˆ

X

i+1 � ⇠

x

i+1

1

CA

T

0

B@
V

i

D

i+1 0

0 ⌃

i+1

1

CA

�10

B@
r̂

i+1 � ⇠

y

i+1

ˆ

X

i+1 � ⇠

x

i+1

1

CA

1

CA �D

i+1.

Define odds ratio or =

p(Ji+1=1|rest)
p(Ji+1=0|rest) , we have

p(J

i+1 = 1|rest) = or

or + 1

.

4. Updating jump sizes ⇠:

p(⇠

i+1|Ji+1 = 0, rest) ⇠ N(µ

J

,⌃

J

)

p(⇠

i+1|Ji+1 = 1, rest) / N(µ

⇤
J

,⌃

⇤
J

)

where

µ

⇤
J

= ⌃

⇤
J

0

B@

0

B@
r̂

i+1V
�1
i

D

�1
i+1

⌃

�1
i+1

ˆ

X

i+1

1

CA+ ⌃

�1
J

µ

J

1

CA

⌃

⇤
J

=

0

B@

0

B@
V

�1
i

D

�1
i+1 0

0 ⌃

�1
i+1

1

CA+ ⌃

�1
J

1

CA

�1

.
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5. Updating microstructure noise m:

p(m

i

|rest) ⇠ N

✓
S

m

K

m

,

1

K

m

◆

K

m

=

1

V

i

D

i+1
+

1

V

i�1Di

+

1

�

2
m

S

m

=

m

i+1 � ř

i+1

V

i

D

i+1
+

ř

i

�m

i�1

V

i�1Di

6. Next, the conditional posterior of with a diffusive matrix normal prior MN(A1, A2, A3)

is given by

p( |rest)

/
N�1Y

i=1

1

|⌃
i+1|0.5

exp

✓
�1

2

⇣
˜

X

i+1 � µ

i+1

⌘0

⌃

�1
i+1

⇣
˜

X

i+1 � µ

i+1

⌘◆

⇥ exp

✓
�1

2

tr

h
A

�1
2 ( � A1)

0
A

�1
3 ( � A1)

i◆
.

This is not a known distribution. We resort to the Euler discretization for proposal

density:

 ⇠ Multivariate� t

 ✓⇣
B

0

2B2

⌘�1
B

0

2B1

◆0

,

⇣
B

0

2B2

⌘�1
⌦ ⌃x

, 3

!

B1 =

✓
X2 �X1 � ⇠

x

2J2p
D2

, . . . ,

X

N

�X

N�1 � ⇠

x

N

J

Np
D

N

◆0

B2 =

⇣
(µ

x �X1)

p
D2, . . . , (µ

x �X

N�1)

p
D

N

⌘0

I draw  from a multivariate t distribution rather than Normal so that the pro-

posal density bounds the target density, then accept  using Metropolis-Hastings

principle.
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7. The conditional posterior for ⌃
x

is given by

p(⌃

x

|rest) /
N�1Y

i=1

1

|⌃
i+1|0.5

exp

✓
�1

2

⇣
˜

X

i+1 � µ

i+1

⌘0

⌃

�1
i+1

⇣
˜

X

i+1 � µ

i+1

⌘◆
.

Proposal density:

q(⌃

x

|rest) /
✓

1

|⌃
x

|

◆N�1
2

exp

✓
�1

2

trace

�
⌃

�1
x

E

�◆

where E =

P
N�1
i=1 E

i+1, and

vec(E

i+1) = (I2 � e

�( � )Di+1
)

�1
( � )vec

✓⇣
˜

X

i+1 � µ

i+1

⌘⇣
˜

X

i+1 � µ

i+1

⌘
T

◆
.

The proposal density has an Inverse Wishart kernel, IW (E,N � 4). Draw from

this distribution and accept using Metropolis-Hastings principle.

8. The conditional posterior of µ

x

with a multivariate normal prior N(m0,M0) is

given by

p(µ

x|rest) ⇠ N(m

µ

,M

µ

)

M

µ

=

 
N�1X

i=1

h
(I2 � �i+1)

0
⌃

�1
i+1 (I2 � �i+1)

i!�1

+M

�1
0

m

µ

= M

µ

(
N�1X

i=1

h
(I2 � �i+1)

0
⌃

�1
i+1

�
X

i+1 � �i+1Xi

� ⇠

x

i+1Ji+1

�i
+M

�1
0 m0

)
.

9. To update �, we use a scaled beta prior p(�) / (�

¯

D)

a��1
(1 � �

¯

D)

b� , where ¯

D is
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the mean duration. The posterior:

p(�|J) /
NY

i=2

(�D

i

)

Ji
(1� �D

i

)

1�Ji
(�

¯

D)

a��1
(1� �

¯

D)

b��1
.

This is not a known distribution. To get a proposal density, we assume that

D

i

=

¯

D:

q(�|J) / (�

¯

D)

P
Ji+a��1

(1� �

¯

D)

N�1�
P

Ji+b��1
.

Generate �̂ ⇠ Beta(

P
N

i=2 Ji + a

�

, N � 1 �
P

N

i=2 Ji + b

�

), then � = �̂/

¯

D has the

target kernel. Accept � using Metropolis-Hastings principle.

10. Posterior for µ

J

with a multivariate normal prior N(M

J

, Z

J

):

p(µ

J

|⇠,⌃
J

) ⇠ N(M

⇤
J
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⇤
J

)

M

⇤
J
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⇤
J

�
Z

�1
J

M

J

+N

j

⌃

�1
J

¯

⇠

�

Z

⇤
J

= (Z

�1
J

+N

j

⌃
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)
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Posterior for ⌃
J

with an inverse Wishart prior IW (f

J

,W

J

):

p(⌃
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J
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)
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11. To update �

2
m

, we use a conjugate Inverse Gamma prior IG(f

m

,W

m

). The pos-
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terior is

p(�

2
m

|m) ⇠ IG

 
f

m

+

N

2

,W

m

+

NX

i=1

m

2
i

!
.

I use an informative prior with sparsely sampled data. The autocovariance of

returns at the highest frequency provides the prior mean of �

2
m

, i.e., E(�

2
m

) =

Wm
fm�1 . Set the prior to data ratio to a, then f

m

and W

m

is given by f

m

=

aN

2 + 1

and W

m

= E(�

2
m

)(f

m

� 1).
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