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Abstract

In this paper we use adaptive lasso estimator to select between relevant and irrelevant instruments
in heteroskedastic and non Gaussian data. To do so limit theory of Zou (2006) is extended from
univariate iid case. Then we use the selected instruments in generalized empirical likelihood esti-
mators (GEL). In this sense, these are called hybrid GEL. It is also shown in the paper that Lasso
estimators are not model selection consistent whereas adaptive lasso can select the correct model
in fixed number of instruments case. It is also shown that adaptive lasso estimator can achieve
near minimax risk bound even in the case of heteroskedastic Gaussian data. This is a new result
and extends the standard normal iid data in Zou (2006). In simulations we show that hybrid GEL

estimators have very good bias and mean squared error compared with other estimators.
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1 Introduction

One of the important issues in economics is selection of the instruments. We think that this is
very important since a lot of empirical cases involving labor, institutional economics deal with very
limited number of instruments. For example Acemoglu, Johnson and Robinson (2001), Acemoglu
and Johnson (2006), Card (1995) papers use 1 or at most 2 instruments with one endogenous
variable at hand. It is critical then in those cases to see whether we have strong instruments or
not. If we have one instrument in just identified case, and it is weak, the second stage coefficient is
inconsistent, see Staiger and Stock (1997). If we have more than one instrument and one endogenous
variable then the second stage regression will give consistent estimate, but in finite samples we will
have bias. Our simulations in the paper show this.

In many instruments setup, there have been several papers analyzing instrument selection re-
cently in the literature. Donald and Newey (2001) target Mean Squared Error of second stage
regression coefficients. Theirs do not take into account the weakness of the instruments. Recently,
Kuersteiner and Okui (2010) use model averaging to pick up instruments. Their approach is similar
to Donald and Newey (2001), and improve on Mean Squared Error of second stage coefficients. In
a landmark paper Belloni, Chen, Chernozhukov, and Hansen (2012) introduce a new heteroskedas-
ticity consistent Lasso type estimator to pick optimal instruments among many of them. This is
a very important leap over the statistics literature as well as econometrics literature. They are
able to establish performance bounds for Lasso estimator for the first time in heteroskedastic, non
Gaussian data. This is very difficult to achieve, since all the results in statistics is for Gaussian and
iid data. Belloni, Chen, Chernozhukov, and Hansen (2012)(Belloni et al. (2012) from now on) use
moderate deviation theory for self normalized sums to solve this problem. In the meantime, this
results in a completely new Lasso based estimator which depend on the residuals as the penalty.

Our paper is interested in selecting instruments in a fixed number of instruments unlike the
many instruments case. Toward that end, we benefit from the recent statistics literature. In
statistics related to model selection, and estimation, Lasso, Bridge are analyzed by Knight and
Fu (2000). Caner (2009) analyze GMM based Bridge estimation. Caner (2009) does not consider
instrument selection and only considers model selection in orthogonality restrictions. Recently, in
statistics, smooth penalty functions are introduced by Fan and Li (2001, 2002). However, one of
the most recent shrinkage based estimator in statistics is adaptive lasso of Zou (2006). This has
optimality properties, and easy to estimate compared to Bridge, and it is also shown there that
Lasso estimator is not model selection consistent asymptotically. Lasso, in fixed number of regressor
case in least squares, cannot select the correct model with probability one, see Proposition 1 of Zou
(2006). Zou (2006) also shows that adaptive lasso is model selection consistent, and achieves the
near minimax risk bound in iid Gaussian data. Adaptive lasso is also oracle efficient, estimates the

nonzero parameters with standard efficient limit in least squares and estimates the zero parameters



as zero with probability one.

Our paper applies adaptive lasso to instrument selection problem in the reduced form estimates,
and then run generalized empirical likelihood estimators in the second stage regression. The main
idea here is to benefit from the very good model selection properties of adaptive lasso in the first
stage. We show that adaptive lasso in the first stage is model selection consistent. In other words,
it can pick the relevant instruments with probability approaching one. Given that we have a better
bias and MSE for the structural parameters in the second stage. We also extend the near minimax
risk bound in Zou (2006) to non iid Gaussian data. In addition to that, we show a variant of Lasso
is also subject to model selection problem, whereas adaptive lasso is model selection consistent.
Adaptive lasso can differentiate between the irrelevant and strong instruments. Simulations in
the paper show that using F test as an indicator may be problematic. In the other simulations,
adaptive lasso performs very well in terms of bias/MSE of second stage coefficients compared with
another Lasso based estimator, Donald and Newey (2001) procedure, model averaging estimator
of Kuersteiner and Okui (2010), LIML, Fuller, and heteroskedasticity consistent version of Fuller
estimator of Hausman et al. (2012).

Recently we come across with two working papers which apply shrinkage based methods to IV
regression. The first one, independently written, is by Garcia (2011). He devises adaptive lasso
for the case of many weak instruments. Note that the asymptotics (of fixed number) of selection
of instruments are entirely different from the many weak instruments case. The next paper is by
Shi (2011). There the issue is the structural equation parameter selection in increasing number
of parameters case with shrinkage. This is also important contribution since it is important to
handle high dimensional problems in econometrics. Shrinkage methods will be immensely useful in
these cases to applied researchers. One very important contribution to this literature is by Leeb
and Pé&tscher (2005). They show that if the parameters are varying by the sample size, then the
shrinkage methods cannot be uniformly consistent, and hence cannot select the true model with
probability approaching one. For this reason, it is impossible to select the correct instruments
with adaptive lasso in the weak instruments context when their number is fixed. We analyze this
situation also in simulations. Our theories are based on fixed parameter asymptotics, and hence is
not subject to the criticism of Leeb and P6tscher (2005). Leeb and Pétscher (2005) idea applies to
least squares framework. However, we are interested in second stage regression estimates. We show
that finite sample distribution of second stage coefficients is not bi-modal, and normally distributed.
This is shown in the simulation section in a simple overidentified case.

Section 2 provides the limit theory for adaptive lasso when relevant and irrelevant instruments
exist. Adaptive lasso picks the relevant ones and eliminates the irrelevant ones, and uses this
information in second stage GEL. Section 3 provides the result that even a new version of Lasso
is model selection inconsistent whereas adaptive lasso can select the model correctly in the case of

fixed number of instruments. Section 4 provides the algorithm that is used. Section 5 introduces



an oracle inequality. Section 6 carries out extensive simulations. Appendix provides all the proofs.

IIIl, I|-|loc represent the Euclidean norm, and maximal value of a vector respectively.

2 The Reduced Form Estimation Via Adaptive Lasso

In this section we show that we can use adaptive lasso in multivariate setting to select and estimate
the reduced form coefficients simultaneously. In this sense, this section extends the univariate
adaptive lasso of Zou (2006). So we will be able to eliminate the irrelevant instruments and keep

the relevant ones. In matrix form the reduced form equations are:

X =2y 4,

where X :n x p, Z : n x ¢, and 7° : ¢ x p matrix, we also have g > p, ¢ represents all the fitted

instruments. We can rewrite that
X 7 0’ 7 0’ 7 0’
= Z17] + 427y +---+ qaVq + v, (1)

Wherevé-):pxlvectorj:1,2---q. Each Z;isnx1,j=1,---q.

Next we can write these in vector form as:
vecX = (I, ® Zy)vee(Y) + (I, ® Zoyvee(R) + - + I, ® Zq)vec(vgl) + vec(v).
We can write this in new notation as:
Xy =20+ + Zyyg + v, (2)

where X, = vecX, Z; = (I, ® Z;), vy = vec(v). So Z; is np x p matrix for j = 1,2---¢, and X, is
np x 1 vector.
Note that 'y;] are the true population coefficient vectors, j = 1,2, -+ ¢, and the true number of

nonzero vectors are qop, with gg > p. We can further rewrite (2)

X, = ZVS + Uy, (3)

where Z = [Zl, -+ Z4] (np X pg matrix), and



where 70 : pg x 1 vector. The objective function is:

a P
Yo = argming, [Xy — Z7]'[Xo — Z7] + An Z Z Wjk|Vjkl- (4)
7=1 k=1
See that the weights are w;, = |Jjx|~", where 7, is the y/n consistent LS estimator, and

0 < 7 < 1. To understand these better note that +, is pq vector, so these are stacked p x 1 vectors,

’Y]v]:la yq.
In these g vectors, the nonzero ones will be denoted by

-A:{ji’Y??éOp}a

where 0, represents a p x 1 vector of zeros. Without losing any generality, we can designate the

last ’Ygo+1v 780+2» o ‘72 as zero vectors (all p x 1 cells are zero). This can be written as

Acz{j:’y?:Op},

Jj=aq +1,q0+2,---q. So we can represent A = {1,2,---,qpo}. Now we assume that for all
relevant instruments (7 = 1,2,--- ,qo) all p cells in vectors y?are nonzero. This is just done for the
simplicity. We will also talk about the possibility of zero cells in fyjo, j=1,2---qy after Theorem 1.
Assumptions.
1.
Velo _ Doie 1Zk 1 zk: P2

= — o, > 0,

v

2 _ 1 1 n P 2 . . . .
where o = limy, oo > > ;11 >y £V, Also this variance is finite.

2. We have the following Law of Large Numbers result:

Z'v,

2.
n
3. .
YAVA
L0 < x.
n

Also matrix C' (pg X pq matrix) is of full rank. We can write C' as

Ci1 Ci2
Co1 Co

where C1; is positive definite full rank, and symmetric submatrix of dimensions ggp X gop.

4. For the penalty term A, /y/n — 0, 1/2n /2 5 o0oand 0 <7< 1.



5. We assume the following Central Limit Theorem

Z'vy d
n1/2 —>N(0,Q) =W.

Q) is pg X pg matrix, and it has €211 as the gop X gop upper left block, as positive definite, full rank
matrix.

Note that Assumptions 1, 2, 3 , 5 are high level assumptions. These can be proved via suitable
moment conditions on the errors and the instruments as in Davidson (1994). Note that we can
use independent data for Theorem 1 below. Assumption 4 is used in Zou (2006). This shows the
behavior of the penalty. The main difference with Zou (2006) is 0 < 7 < 1. This is needed for the
consistency proof. This is not shown in Zou (2006).

Set A, = {j : 945 # 0,}. Note that 4,4 represents the adaptive lasso estimator for the first gop
elements in 4,. Let 78 4 (qop x 1 vector) represent the corresponding true nonzero elements. The
following theorem generalizes adaptive lasso of Zou (2006) from univariate, iid case to multivariate,
heteroskedastic case. Oracle property is also preserved as in Zou (2006).

Theorem 1.Under Assumptions 1-5,

(i).

n2(Fua —204) 5 N(0, C' Q1 O,

(ii).
lim P(A, = A) = 1.

n—oo

Note that A definition can be changed to A" = {j,k : v # 0,5 =1,---¢,k = 1,---p}. Our
definition of A is just for simplification. One issue is how the results may be affected when we
have a combination of zero and nonzero cells in first gq fy? vectors. From the proof of Theorem
1, we see that 4, is pg X 1 vector, but each cell in that vector is penalized separately. So we will
find zero and nonzero cells in pg x 1 cells. So as an example, if p = 2,¢q = 3,990 = 2, we may
estimate y1 = (1,0),72 = (2,3)" and 73 = (0,0). So our method will find that v = 0,(first
coefficient vector, 2nd cell) but still clearly that 7 is relevant since v1; = 1, and the instrument
corresponding to that will be put in the second stage regression. But since y31 = 732 = 0, the
third instrument will not be used in second stage regression. An irrelevant instrument means that

all p cells of 7; are zero.



2.1 Second Stage Regression

Since we find the relevant instruments in the first stage via adaptive lasso, we can use them in the

second stage regression . In other words,
/
Yyi = 230 + €,

fori=1,---n, and 8 : p x 1 vector. Now assume that the instruments are uncorrelated with ¢;.

Then the first estimator to consider is two step GMM
Banm = (X' ZWZLX) " N(X' 2, W ZLY),

where Y = (y1,---,yn) X is n X p matrix and Z, = [Zy,---,Zy] : n X go matrix. W is the
standard efficient weight used in GMM. Application of the standard asymptotic theory to /3(; MM
will provide the efficient GMM limit.

Define the function p(¢) where ¢ is a scalar, and the function is concave on its domain. Next,
we consider generalized empirical likelihood (GEL from now on) estimators for the second stage.
These are defined in Newey and Smith (2004).

n

Bapr = argmingep sup > _ p(8'gi(B)),
6€AR(B) =1
where B is a compact subset of RP, and A, (3) = {§ : 8¢;(B8) € V,i = 1,--- ,n}, V is an open
interval containing zero. Since this is a linear model g;(8) = Zie; = Z;(y; — x;ﬂ), and Z; is qp x 1
vector. When p(¢) = In(1 — ¢) this is empirical likelihood estimator, when p(1) = —exp(¢), this is
called exponential tilting, and when p(:) = —(1+1¢)?/2, this is called continuous updating estimator.
For standardizations, and further detail, see Newey and Smith (2004). Using the correct number of
relevant instruments gp from the first stage will result in standard GEL limits as shown in Newey
and Smith (2004).

An important point is why we use immediately Z, matrix of dimensions n X gy (i.e. the correct
number of instruments). The reality is we have ¢ number of instruments from the first stage. But
Theorem 1(ii) clearly shows that ¢ — g 2.0. Selection consistency provides the reason to use the
correct number of instruments in the second stage. We could have shown this in extensive proofs,
but this is not difficult to show, and could have unnecessarily lengthened the proofs. But to show the
main argument, take the linear GMM and analyze ||Z’e/n'/?|| where Z = (Z1, - -- s Z)g—qol)- This
is one of the limit terms. Note that Z is a n x |G — qo| dimensional matrix, where § is the estimated

number of relevant instruments in the first stage (reduced form). See also that € = (€1, -, €,).

HZIG/nl/QH < \/MHZIE/nl/zHOO = Op(l)v



given stochastically bounded ||Z’e/n'/?||o. The other terms can be treated similarly, so both in
linear GMM, linear GEL, selection consistency provides us with starting the second stage with
correct number of relevant instruments. This does not make any difference in the limit. Note that
in the simulations we use estimated number of instruments from the first stage and then put them
in two step GMM and GEL in the second stage.

We could have done model selection in the second stage given the number of instruments, but
we believe that they have to be analyzed jointly. There may be identification problems with this.
But we believe this is an open question to be analyzed. We also develop theory for the case of using
the predictors from the first stage to be used in second stage. But this did not get us good finite

sample results in simulations, so we do not report them to save space.

3 Asymptotic Bias and Selection Inconsistency of Lasso

This section will analyze certain Lasso estimators that are used in the literature. The first one is
regular lasso, and it has asymptotic bias and is model selection inconsistent as shown in Theorem
2 of Knight and Fu (2000). So we refer the reader to Knight and Fu (2000) for details. The second
one is heteroskedasicity consistent Lasso type estimator of Belloni et al. (2012). Their estimator
is a big leap in the literature. This estimator, in large number of instruments case, can choose
optimal instruments, and has the oracle property for the instrumental variable estimation. This
estimator also works well with heteroskedastic and non-Gaussian cases. Here we show that with
fixed number of instruments, there is an asymptotic bias in estimating the relevant instruments
with their method (a variant of lasso as well as post-lasso which is least squares after running
least squares), and this affects selection consistency in return. Note that the setup of Belloni et al.
(2012) involves many instruments, and hence we are not analyzing that case. We ask ourselves the
question that what if their method could have applied to fixed number of instruments, can we have
selection consistency? Since it has also data dependent weights as adaptive lasso here, this will be
a good estimator to compare.

But we want to make one point crystal clear, their paper is path breaking in this literature.
Our paper is not attempting to take away from large contributions that they made. So we setup

the model in Belloni et al. (2012) with fixed number of instruments.

/
yi = d;a0 + €,
where d; is kg X 1 endogenous variable vector, and

E[61|Zz] = 0,

for each i =1,--- ,n. z is p x 1 vector of instruments, and p is fixed, unlike Belloni et al. (2012).



Next the reduced form equation is
di = zi70 + i,

where v;, €; are correlated, and 7 is p x 1 vector, E(v;|z;) = 0, p > kq. With no loss of generality,
we abstract away from including control variables in both reduced form and structural equations.
Also we set kg = 1 to simplify the notation. With a vector of endogenous variables, kg > 1, we
could have followed the methodology in section 2, and sum the penalty terms over all k; times p
parameters (reduced form matrix elements). Then our Assumption B.1 will be true with the added
maxj<j<g, condition. To simplify the proofs/assumptions we set kg = 1.

In Belloni et al. (2012), quite sensibly the number of relevant instruments are approximately ”s”
(Condition AS in Belloni et al. (2012)). This is a very good idea in their case, since with increasing
number of instruments (in their case p — o), it makes sense to describe the relevant instruments
as approximate number. However, in our case we setup the fixed number of instruments as possible
instrument candidates, and then the true number of instruments is fixed and equal to s. In a simple
applied work it is sometimes difficult to find valid instruments (see Acemoglu et al. (2001, 2006))
so this is a reasonable assumption in our case.

Next we define the heteroskedasticity consistent Lasso:

n

P
AL = argminw[Z(dz‘ =zl 4+ A Z il (5)
i=1 j=1

where they have two step process in estimating ~.

First, they set, for each j =1,---p,

n

. 1 -
7Tj: *ZZ’%(di—d)Z,

n
=1

where d = n~! >, d;. By using this in the Lasso formula above they get Initial Lasso. Then after
getting ”Initial Lasso”, they setup the following refined loadings

where 0; = d; — 23 Initiai— Lasso- After using the refined loadings in (5) objective function we get 9.
This is equation (2.4) in Belloni et al. (2012). The steps to get lasso estimator is well described in
Algorithm 1 in Appendix of Belloni et al. (2012). They only select the instruments in the reduced
form, and there is no model selection in the second stage. We will follow this sequence in this part

of the paper as well. We will not analyze post lasso estimator in their paper since this is just a



regular-unpenalized least squares estimator after running lasso estimator with refined loadings.
Before the assumptions we introduce some of the notation that is used in Belloni et al (2012).

Let || fillon = \/2 Y1, f2, for a generic random variable f;. Then let E,(fi) = 37" | f;, and
E(f;) = lim, .o BE[X Yo fi], and di = d; — Ed;,1 < i < n. We make the following assumptions

n

for the following Lemmata:

Assumption B.1

(i)-

1<j<p
(ii).
K2log®n = o(n)
(iv).
o logn

and

(v).
o = OP(M _

H Zz{ (’A)/Lasso - 70)

Assumption B.2

(). YLasso 18 consistent.

(ii). A/n'/2 — X > 0.

Note that Assumption B1(i)-(iv) are Assumption RF(i)-(iv) in Belloni et al. (2012). Assump-
tion B1(v) is Theorem 1 of Belloni et al. (2012), we use this to shorten the proofs. Before the
limit of Lasso in Lemma 1, set & = n'/2(5; — 7). Define ﬂ? = \/hmnﬂoo LS Ez20? for all

ij 1
1=1,2---n.

Lemma 1. Under Assumptions B.1-B.2 we have the following limit
nl/Z(’yL - %) 4 argmin,V (u),

where
P

V(u) = =2u'W +u'Su + Ao Z[W?ujsgn(’ngwg)l{w)#o} + ‘ijj(')yl{wjozo}]’
j=1



. . _ p .
and W = N(0,Xz,), where ¥z, = lim,, % S Eziziv? withn S0 22l 5 ¥ = limg, oo % Son o Ezizl.

This clearly shows the asymptotic bias of Lasso with respect to nonzero coefficients of Belloni
et al. (2012) in the special case of fixed number of instruments. This is similar to the limit of
Lasso in Knight and Fu (2000). Before going over our second result in this section, we introduce

the following notation from Zou (2006). See that

Y11 X2
o1 oo

Y —

i

where Y17 is a square matrix, corresponds to limit of second moments of relevant instruments, it
is also invertible and positive definite, 392 corresponds to limit of second moments of irrelevant
instruments, and 319 is the limit of sample cross product of the relevant with irrelevant instruments,
Y91 = Xf,. Note that A, = {j : %; # 0}, and A = {j : vj0 # 0}.

Next we show that the asymptotic bias results in selection inconsistency of the Lasso type es-
timator considered in this section. Namely, if there is a weak or irrelevant instrument, then this
Lasso may not eliminate that and put the weak instrument in the second stage. In a simple model
with one endogenous regressor and one instrument, this results in inconsistent estimation of the

second stage coefficients through Staiger and Stock (1997) asymptotics.

Lemma 2.Under Assumptions B.1-B.2,
limsup P(A, = A) <ec<1,
n

where ¢ is a constant depending on the true model.

Our result extends Proposition 1 of Zou (2006) from regular Lasso to the Lasso that is used
by Belloni et al. (2012). We show that usage of this Lasso estimators in fixed instruments context
may lead to inconsistent instrument selection, which may affect the second stage regressions as
discussed above. However, we should note that the Lasso used in Belloni et al. (2012) is for large
number of instruments with an approximate number of relevant instruments, we do not analyze
their estimators behavior in a large instruments context. The Lasso that they introduce is a huge
leap in the literature. They show clearly that with heteroskedastic and non Gaussian data, Lasso
satisfies an oracle inequality. Theirs is very innovative work both on theoretical terms as well
as its practical use. Ours is an attempt to analyze what may happen to Lasso type estimators
in a fixed number of instruments framework. We show that adaptive lasso is immune to the
instrument inconsistency problem. Bithlmann and van de Geer (2010) also show/discuss better

selection consistency properties of adaptive lasso over lasso in sections 2.8.3, and 7.8.3 of their
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book.

4 Algorithm and The Choice of the Tuning Parameter

Adaptive lasso estimates can be computed efficiently by a modification of LARS (Least Angle
Regression, and S suggesting ‘LASSO’ and ‘Stagewise’) algorithm (Efron et al. (2004)). The
computational efficiency is an advantage of adaptive lasso in practice compared to other Oracle
methods such as SCAD (Fan and Li, 2001) and bridge estimator. In this section, we briefly discuss
the implementation of LARS in adaptive lasso.

In Zou (2006), a simple modified version of LARS can be adopted for the adaptive lasso esti-
mation. It works as follows.

To illustrate the method, we set up a basic linear model, for i =1,...,n
z; = Ziy + v (6)

where z; is the univariate endogenous variable, Z; = (Z;1, ..., Z;q)" is the associated d-dimensional
instruments, v = (71,...,7q)" is the coefficient vector and v; is the random error with mean 0
and variance o2. For multivariate model we vectorize X, Z, v etc., the algorithm works as in the
univariate case. Assume that we fit d predictors and the true model has dy variables (1 < dy < d).

Adaptive Lasso Algorithm

1. Create new covariates ZJ’»k = Z;/wj;,j=1,2,...,d, where w; is the adaptive weight as defined

in Section 2. Note that each Zj, Z;-‘ is n x 1 vector.

2. Solve the LASSO via LARS algorithm for given A.
d 2 d
7 =argmin||X =3 Z7 ;] + A | (7)
j=1 j=1

where X = (X1,...,X,)".
3. Output is 4; = 4;/w;, j = 1,2,...,d. This is the adaptive lasso estimate.

4. Then we put 45, j = 1,2,...,d, adaptive lasso estimate from Step 3 in equation (8) below.
This provides us a BIC value for a given A. Note that tuning is explained in details after the

Algorithm.

5. Repeat Steps 2-4 for each remaining A in a set of A (e.g., A = {A1,..., A1po}) and record each
BIC), for given 4(\).

6. Choose the pair of (), which minimizes BIC over .

11



In Step 2 we use LARS algorithm to compute LASSO. Then in Step 3, we convert this to
adaptive lasso solution. Now we explain the simple intuition behind LARS. LARS procedure works
as follows (see Efron et al. (2004) for more details). Assume for simplicity that we have standardized
our explanatory variables to have zero mean and unit variance, and that our response variable also
has zero mean. We start with all coefficients being equal to zero (no variables in the model), and
find the predictor most correlated with endogenous variable x, say it’s the first covariate z; (as we
can always switch the ‘position’ of the covariates). The reasoning here is the largest correlation
possibly shows significance of the variable, so we take out that variable and include in our model.
Since the covariate z most correlated with the residual is equivalently the one that makes the least
angle with the residual, the name of the method is called ‘least angle regression’. We take the
largest step possible in the direction of this predictor until some other predictor, say zo, has as
much correlation with the current residual. Different from classic Forward Selection which takes
a ‘full step’ with z;, LARS now proceeds in a direction equiangular between the two predictors
z1 and 2o (so that the residual makes equal angles with both covariates) until a third variable z3
becomes equally correlated with the current residual. LARS then proceeds equiangularly between
z1, z2 and zs, that is, along the ‘least angle direction’, until a fourth variable enters, and so on. The
result of 4 in Step 2 depends on A choice. We explain this in detail next in choice of A\. As shown
in Theorem 1 of Efron et al. (2004), a slight modification to LARS can get us the full solution path
of LASSO.

In this part we explain the method to select tuning parameter A which we use in the adaptive
lasso simulations. Recall that the tuning parameter A controls the penalty level and therefore the
model complexity. We follow the tuning parameter selector by Wang and Leng (2007). In their
paper, it has been shown that with the BIC method, tuning parameter can achieve the oracle
properties of adaptive lasso. BIC method is selection consistent for adaptive lasso under fixed
predictor dimension and a slight modification of the BIC method is also consistent under diverging
number of parameters (Wang et al. (2009)). In Wang and Leng (2007), they show that the tuning
parameter by BIC method can select the correct model with probability approaching one.

The BIC method for A selector is to minimize the following
BIC) = 63 + DF\log(n)/n (8)

where 6% = n~1 || X — Z4||?, DF) is the number of nonzero coefficients in 4 which is described in
Step 3 of adaptive lasso Algorithm. Z is n x d matrix where the vector form is described in (6).
The reason we use this method is that BIC method can get us the model selection consistency when
the sample size n is approaching oco. But other methods such as AIC or GCV (generalized cross

validation) can not get us there (see Wang et al. (2009)).
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5 Oracle Inequality

In this section we extend an important result due to Zou (2006). Zou (2006) provides the proof that
adaptive lasso achieves near minimax risk in iid standard normal data. Here we show that this can
be extended to non iid, but Gaussian heteroskedastic data. The proof is generally different than
Zou (2006). A more general regression setup can be achieved with heteroskedastic non Gaussian
data. This may be possible by using moderate deviation theorems as in lasso of Belloni et al.
(2012). This is a different scope than the current paper and will extend the paper enormously
in volume. Oracle inequalities on general non Gaussian settings are difficult to establish, and the
main aim of our paper is to show that adaptive lasso first step helps in selecting instruments, and
improves on the second stage GEL finite sample properties. The model that we use is from Zou
(2006).
Ti = Wi + Vi,

where v; is the error term, and EVZZ = J? > 0, for each i = 1,2---n. The aim is to estimate u;
with adaptive lasso estimator fi;. The risk is defined as in Zou (2006)
n
R(#) = B3 (s — o))

i=1

The ideal risk is defined in equation (16) of Donoho and Johnstone (1994) as
R(ideal) = Zmin(u?,o?),
i=1

where min(a, b) represents the minimum of the scalars a, b. Adaptive lasso estimate in this case is

derived in equation (5) of Zou (2006) as

s = argmin, 3 = 0 + =l )
for i =1,2---,n, and \; = (y/202logn)**7. This type of \; is used in p.113 of Averkamp and
Houdre (2003). Note that the )\; is compatible with the results in section 2. We abstract away from
estimation of ¢? for the main purpose of showing the oracle inequality. As stated in Zou (2006),
since we have one observation for each p;, the weight is defined as |z;| ™", where 0 < 7 < 1. So oracle
inequality here in Theorem 3 extends Zou (2006) from iid Gaussian case to heteroskedastic-Gaussian
data.
So the minimization of (9) above provides us the following as in Zou (2006)
Ai

o= |l = 25| sonta, (10
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where [.]; denotes the positive part of the expression inside, otherwise this is set as zero, i.e.

[k]+ = k,ifk > 0, otherwise [k]; = 0. The following is one of the main results of the paper. We

take 0; to be the positive root of variance o2. The proof has to be modified slightly otherwise.
Theorem 2.(Oracle Inequality). Let \; = (2021logn)17)/2 then

1/2

1 _
) + WW(ZOQW 1/2]7

R(i1) < (2logn + b+ 2)[R(ideal

where d > max; 0;, 0 < d < 00, ¢ > d/min;o?, b = max(2c,4d + 1). Note that b,c,d,o; are all
positive constants, and do not depend on n.

This shows that even though we have heteroskedastic-Gaussian data, adaptive lasso still attains
the near minimax risk as shown in Zou (2006) in iid-Gaussian case. Theorem 2 here gives us a
basic oracle inequality, extending Zou (2006). In Theorem 3 of Zou (2006), Gaussian-iid case, he
finds

R(i1) < (2logn + 5+ %)[R(ideal) + \/12?(logn)_1/2].

Compared to Zou (2006), because of non iid Gaussian nature here, our constants b, ¢, d depend on
02-2. In Zou (2006), he takes J? = 1. Theorem 2 is a new result, and the proof technique is not the

same as in Zou (2006).

6 Simulation

In this section we want to answer three questions. The first one is whether our test can do better in
selecting the irrelevant instruments compared with F test? The second question is to compare the
adaptive lasso with a full model (i.e. no model selection) for the second stage regression? The third
question is whether adaptive lasso selection of instruments will deliver better second stage finite
sample results compared with several competitors. The fourth question concerns the bi-modality of
shrinkage estimators in least squares context that is raised by Leeb and P&tscher (2005). We want
to see whether this bi-modality in the first stage can affect the second stage structural coefficients.
To answer the first question we use a basic setup. To answer the rest of the questions, and especially

the fourth one, we use a model which includes Leeb and Pé&tscher(2005) setup.

6.1 Performance of Adaptive Lasso in First Stage Selection

First, we look at the performance of adaptive lasso in the reduced form equation. We report the
percentage of correct model selection, when the nonzero (strong) instruments are estimated as
nonzero and zero (or local to zero) instruments are estimated as zero. The LARS algorithm that

is used to get adaptive lasso estimates as well as tuning parameters are described in section 4.
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TABLE 1: Comparison of Adaptive Lasso with F test
‘ Simulation results for Model 1 | Simulation Results for Model 2, t = 3

MSP F-MSP MSP F-MSP
n=60,0 =6 .65 .04 41 .03
n = 60,0 =3 .98 .74 .81 .79
n=120,0 =6 | .87 .24 77 .19
n=120,0 =3 | .98 1.00 .87 1.00
n=2300,0=6| .97 94 .95 91
n=300,0 =3 | .99 1.00 .92 1.00

MSP is the rate of correct model selection, 1 being perfect model selection, 0 being lowest. This is for adaptive lasso.
F-MSP is the rate of F-statistics greater than 10.

We use the following design for the reduced form equation.
X=2Zyv+v (11)

where X is n x 1 endogenous variables, Z is n x 2 matrix of instruments. Z; ~ N(0, I3) i.i.d. and
E(v|Z;)=0fori=1,2,...,n. v; ~ N(0,0?) i.i.d. Let v = (y1,72) is 2 x 1 true parameter vector.
The IV model has two settings of parameter values:

Model 1 : one strong and one irrelevant instrument. v = (2,0)’

' where t is a

Model 2: one strong and one weak (local to zero) instrument. v = (2, ﬁ)

constant real number

In both models we simulated 100 datasets for each combination of (o,n). We use three
sample sizes, n =60, 120 and 300 and o takes on values 6, 3 in corresponding model setup. We set
t = 3. This is a small scale simulation, since LARS is computationally intensive. Still, this provides
us with the information that F test is not working well to separate the weak instrument from the
strong one.

In Table 1, we use F test (joint test on both instruments) on the reduced form equation and
report the percentage of when F-statistic is greater than 10. It is common in applied studies
that diagnose instruments to be weak if F-statistic is less than 10 (Staiger and Stock, 1997). F-
statistic is also approximately increasing with concentration parameter which is a unitless measure
of instrument strength (Stock et al. (2002)). Note that we are not using 11.39 as the critical value
as advocated by Stock et al. (2002)). This could have made the results much worse for them.
We will compare the model selection performance of adaptive lasso and first stage F-test ‘rule of

thumb’ (use all instruments whenever F-statistic is greater than 10).
In our simulations, F-test ‘rule of thumb’ tends to miss the mark of model selection since it

does not reject the Hy that both coefficients are zero when ¢ = 6,n = 60,120. Also, it is known

that rejection of the null hypothesis by no means implies there is no weak instrument (Staiger and
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Stock, 1997). On the other hand, adaptive lasso not only shows there are weak instruments in the
model, it specifically tells which ones are (by shrinking them to 0). This simulation setup here is
just used to illustrate the simple problems that may arise with ad hoc F-test with a large noise and

a mixed quality of the instruments. A setup that favors F-test may provide good results for F-test.

6.2 Comparison of Hybrid Estimators with Other Estimators

We present here several ‘hybrid’ estimators. We call it hybrid since in the first stage we use adap-
tive lasso to select instruments. In the second stage we use generalized empirical likelihood (GEL)
estimator, specifically, the continuous updating (CUE), exponential tilting (ET) and empirical
likelihood (EL), as well as TSLS (or GMM in heteroskedasticity case). We therefore name these
hybrid estimators, respectively, H-CUE, H-ET, H-EL and H-TSLS (H-GMM in heteroskedasticity
case). In simulations we also include the Donald and Newey (2001) estimator, Kuersteiner and
Okui (2010) model averaging TSLS estimator, Belloni et al. (2012)’s Post-Lasso estimator and
the traditional limited information maximum likelihood (LIML), Fuller’s estimator and the het-
eroskedasticity robust Fuller (Hausman et al., (2012)) . We compare the results of these structural
equation parameter estimators in terms of finite sample properties. We also adopt the model setup
in Leeb and Pétscher (2005) in the reduced form equation.

We now briefly explain other estimators which we compare our hybrid estimators. First, we
show Donald and Newey (2001) estimator which chooses the number of instruments to minimize
the leading term of Nagar (1959) type MSE. The 2SLS estimator is

= (X'PEX)" X' PKY (12)

where X = (z1,...,2,), Y = (y1,...,yn), PX = ZK(ZK'ZK)=1ZK and K is the index for
the number of instruments which are included in the regression. Now we define the necessary
variables to minimize MSE with respect to K as described in Donald and Newey (2001). Let (3
be some preliminary estimator of 3, e.g., it can be the regular 2SLS estimator. Let € =Y — X3,

H = X'PKX/n, and @ = (I — PX)X. Let @y, = aH '\, where A\ = 1. We have the following

variables: 62 = &¢/n, 63 = @\uy/n, 6rc = @\é/n. These preliminary estimators do not depend on

K, they remain as constants as the approximate MSE are calculated. We can use cross validation

or Mallow’s in the calculation. Taking Mallow’s criterion as an example, first, let ¢/ = (I— pPK )X,
SKIAK

af = o HA. So the Mallow’s criteria is RY'(K) = ) D W 63(2K/n). Finally, the approximate

n

A K? .
MSE of the 2SLS estimator is Sy(K) = 62, — + &2 <RT(K) —oy— |.
n n
Second, the model averaging estimator by Kuersteiner and Okui (2010) is considered. Set a
weighting vector W, where W = wq,...,wys, and Z%zl wy, = 1 for some M which is the number

of all possible instruments. Let Z,,; be the vector of the first m elements of Z,;; which is an
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M x 1 vector of instruments, let Z,, be the matrix (Zy, 1, ... Zm ) and let Py, = Zp, (2, Zm) 1 Z),,.
Define P(W) = Zf‘il W Pp,. The model averaging two stage least squares estimator (MA2SLS) is
defined as 3 = (X'P(W)X) 1 X' P(W)y.

Third, the Post Lasso estimator by Belloni et al. (2012) which estimates the optimal instruments
set. The Post Lasso is essentially OLS with Lasso selected variables. The Lasso estimator of the

reduced form f is
B = argmin Q(3) + |14
— Y R n !

R 2 AN

= arg mi {nZ(CCz —2i08)° + EZ 17551
=1 7=1

where Q(f3) is the sum of squared residuals (least squares) from running z; (endogenous variable)

on z; (the instruments) and || Y8||; is the sum of absolute values, T is penalty loadings defined as

follows:

Initial (or basic option) penalty loadings. Each (j,j) element of the p x p diagonal Y matrix is

~ xTr; —
=1

where 7 = n~! >oi, ;. Refined penalty loadings are formulated in this way. Each element of the

p X p diagonal T matrix is

i=1,2,....p (14)

where 0; = x; — z;B, where B can be either initial LASSO or Post-Lasso (LASSO using the initial
penalty loadings) after a finite number of iterations.

Fourth, the heteroskedasticity robust Fuller’s estimator (Hausman et al. 2012) is given as
follows. Let P = Z(Z'Z)"1Z', Pij denote the ij'" element of P, and X = [y, X]. Let & be the
smallest eigenvalues of (X'X) Y X'PX — Y %, P;X;X]). For a constant C let & = [@ — (1 —
a)C/T]/[1 — (1 — &)C/T]. The heteroskedasticity robust Fuller’s estimator (HFUL) is given by

n n
B=(X'PX =Y PiXiX|—aX'X)"MX'Py— Y PiXwyi — aX'y) (15)

=1 =1

The asymptotic variance estimator is shown in p. 215 of Hausman et al. (2012), which we use in

the calculation of HFUL variance.
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6.2.1 Simulation Results for Conditional Homoskedasticity

The linear IV regression model with a single endogenous regressor and no included exogenous

variable is:

Yi = Boxi + € (16)
T = Y1210 + V222 + Vi (17)
where ¢ = 1,2,--- ;n. The true Sy = 1. Assume the IV matrix Z = [z1, 29] has full rank and
satisfies
2
Z'Z/n — %, = [ T I ]
0172 U'2y2
as n — oo. We further assume 031 = 032 = 1 and the correlation between z; and zo is p; =
Oryiva/(04104,) = .7. The errors [e;, ;) (i=1,2,---,n ) are assumed to be i.i.d. N(0,X), where

Let 0¢ = 0, = 2 and p2 is correlation between the two error terms € and v. The closer ps is to 1,
the stronger the endogeneity of z. We use two values for po in simulations, .5 and .99. Each model
is replicated 500 times. Now we use two setup of 7’s:

Model 1 : one nonzero (strong) and one exact zero (irrelevant) coefficients v = (1,0)’

Model 2: one nonzero (strong) and one local to zero (weak) coefficients v = (1, ﬁ)/ , where ¢
is a scalar, 2.5, 3.54 (for sample size n= 100, 200 respectively), so we have v2 /0., = .25 as in Leeb
and Pé&tscher (2005).

The reduced form equation model settings corresponds to the potential bi-modal density of
LS estimator in Figure 2 of Leeb and Pétscher (2005). We analyze the critique of Leeb and
Pétscher (2005) and we show in simulations that the our second stage coefficients are immune to
bi-modality. In the case of irrelevant instruments, we do not expect bi-modality since all parameters
are constants. See Proposition A.9 of Leeb and Pé&tscher (2005).

In the following tables we report the median bias of the estimates (Bias), median absolute
deviation (MAD), coverage rate of a nominal 95% confidence interval (95% Coverage Rate), mean
squared error (MSE) and the percentage of z; being selected but not zo (Model Selection %). We
also show in the following figures the finite sample densities of the hybrid estimators 3. We also
did simulations for n = 1000, and the case that v2/0,, = .21 as in Leeb and P6tscher (2005). The
results of y2 /0., = .21 are very similar to the results of v2/0,, = .25. For n = 1000, the results are
similar to n = 200. Therefore these figures and tables are not shown here for the sake of space.

First we consider the bias. From Table 2, we see that full model TSLS is worse compared to all
hybrid methods, Post-Lasso of Belloni et al. (2012) and full model LIML. For Model 1, the median
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bias of the full model is 0.032, while the bias of hybrid TSLS, CUE, ET, EL are 0.019, 0.019, 0.020
and 0.018 respectively. Therefore we do not recommend using the full model TSLS. LIML has the
best bias term (which is 0.012) given our linear homoskedastic model. If we use TSLS with only
the strong instrument (SO), the bias is 0.015. Post-Lasso has bias 0.024 which is worse than the
hybrid estimators. Donald and Newey (2001) and Kuersteiner and Okui (2010) model averaging
TSLS estimators (with bias 0.035 and 0.036 respectively) have higher bias than the full model.
Fuller’s estimator has bias 0.031 which is very close to the full model TSLS. Model 2 in Table 1 has
also very similar results. When we analyze Tables 2-4, we see that LIML has the best bias followed
by H-CUE estimator.

Second we consider MSE. Overall, hybrid CUE-ET estimators have the best MSE in Tables 2-5
followed by post Lasso and Fuller estimators. In Table 2, Model 1, the MSE for hybrid CUE-ET
are 0.040, 0.040 respectively. Full model TSLS has 0.051. LIML’s MSE is 0.057 which is worse than
all except from the weak only (WO) TSLS case (MSE is 0.079). TSLS with strong instrument only
(SO) has MSE of 0.055. Donald and Newey (2001), Kuersteiner and Okui (2010) model averaging
TSLS estimators have MSE of 0.051 and 0.050 respectively. Post-Lasso has MSE of 0.043 whereas
Fuller has MSE of 0.044. In Model 2, hybrid GEL estimators are the best (0.028, 0.028 and 0.029
for H-CUE, H-ET, H-EL respectively). Kuersteiner and Okui (2010) model averaging TSLS and
Fuller’s estimator are (closely) second best (0.030) and post Lasso has MSE of 0.031. Full model
TSLS, hybrid TSLS and Donald and Newey (2001) estimator and Post-Lasso are closely behind
(0.031). MSE of TSLS with strong IV only (SO) and LIML are both 0.034. In Table 3, we see the
same trends as in Table 1. But in Tables 4-5, all models are pretty close to each other in MSE
when n = 200.

When we look at the coverage rates for a 95% confidence interval, we see that all methods are
slightly under the nominal rate generally. In terms of model selection rates, Hybrid estimators
perform very well, Donald and Newey (2001) method does not do that well, and post Lasso is
in between the two cases. To give an example in Tables 2-3, H-CUE has correct model selection
77-92% of time, whereas Donald and Newey (2001) method has 22-51% correct model rate, and
post Lasso of Belloni et al. (2012) has a rate of 53-82%. From the following Figures 1-8, we see
that the bi-modality of the reduced form equation such as the ones shown in Fig. 2 of Leeb and
Pé&tscher (2005) in the reduced form equations does not affect the empirical distribution of hybrid
GEL estimators of the second stage in overidentified case. The figures for heteroskedastic case
are not shown since the main idea is to show that structural parameter estimates in overidentified
framework are not affected by bi-modality of reduced form coefficients.

To summarize, in the homoskedastic case, LIML has the best bias, but hybrid CUE-ET have

the best MSE terms, also we see that hybrid estimators do a very good job on selecting the model.
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6.2.2 Simulation Results for Conditional Heteroskedasticity

The IV regression model we use here is similar to the one used in conditional homoskedasticity
simulations, but with modification of the error terms, replacing €; by €; = || Z;||€; (]||| is the Euclidean
norm) and v; by v; = || Z;||v; to have the desired heteroskedasticity.

We now describe the simulation results as shown in Tables 6-9. In the tables we present finite
sample results for the new hybrid estimators, respectively, hybrid GMM (H-GMM), hybrid CUE
(H-CUE), hybrid ET (H-ET) and hybrid EL (H-EL) estimators. We also include Donald and Newey
(2001) estimator, Kuersteiner and Okui (2010) model averaging estimator, Post Lasso by Belloni et
al. (2012), heteroskedasticity robust Fuller’s estimator by Hausman et al. (2012), the conventional
full model (use all instruments) GMM, and full model CUE estimators. We report median bias,
median absolute deviation, nominal 95% coverage rate, MSE and the percentage of only the strong
IV being selected by the model selection methods.

First, we describe the results of MSE. In Table 6, Post Lasso is the best in terms of MSE. The
hybrid estimators are the second best in MSE category. In Model 1 of Table 6, Post Lasso has MSE
of 0.164. The hybrid GMM, CUE, ET, EL have MSE of 0.196, 0.189, 0.187 and 0.195 respectively.
Heteroskedasticity robust Fuller’s estimator has 0.288. Donald and Newey (2001) estimator has
0.359. Full model GMM and CUE have MSE of 0.513 and 0.517 respectively. Since Kuersteiner and
Okui (2010) estimator is designed for homoskedastic data, its MSE is the highest, which is 0.600.
Model 2 has similar results. In Table 7, with small sample size and higher endogeneity, we find that
Post Lasso has the best MSE. In Model 1, Donald and Newey (2001) estimator has the second best
MSE with 0.135. The hybrid estimators (H-GMM, H-CUE, H-ET, H-EL) have 0.188,0.187,0.186
and 0.186 respectively. In Model 2, Post Lasso has the best MSE. Hybrid estimators, H-GMM,
H-CUE, H-ET, H-EL, are the second best in terms of MSE, which take the values of 0.157, 0.156,
0.154 and 0.157 respectively. Donald and Newey (2001) estimator is the third in MSE category
with 0.165 in Table 7, Model 2. Tables 8-9 show results when n = 200. In terms of median bias,
and mean absolute deviation, hybrid estimators perform well compared with post Lasso. Tables
6-9 show that post Lasso has higher bias compared with hybrid estimators. In terms of coverage
rates, all methods undercover. Hybrid estimators also have very good model selection percentage
in reduced form equation compared with post Lasso and Donald-Newey (2001) estimators as can
be seen in Tables 6-9. As expected, in the case of weak instruments, the correct model selection

percentages of all methods suffer.

7 Conclusion

This paper proposes hybrid estimators. The first stage is adaptive lasso estimation/model selection.

This method penalizes irrelevant instruments and do not use them in the second stage. In the second
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stage we try two step GMM, as well as Continuous Updating (CUE), Exponential Tilting, Empirical
Likelihood estimators. We show that hybrid estimators have good finite sample properties compared
with existing methods. We think that a useful extension is to find a way of jointly analyzing reduced
and structural form equations in adaptive lasso framework. But this poses identification issues. To
overcome them will be a major step.
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APPENDIX

Proof of Theorem 1.

Consistency is analyzed first, then in part (i) we consider asymptotic normality, then in part

(ii) selection consistency is proved. Denote the loss function as:

p
Ln(’)/v) = [Xv - Z’Yv]/[Xv - Z’Yv] + )\n Z Zwﬂf”y]k’ (18)
7=1 k=1
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Using (2) see that sum of squared errors part in that equation can be written as

1 . . 1 . .
(KXo = Z7)' (Ko = Z) = —ve = Z(w - YO o = Z(v — )]
_ o ut o Zw =)
n
Z'Z
+ (=) ( - ) (0 —79)
First, by Assumption 1
Vlv _ >t Xt Vi 25250

Then by Assumption 2

Next via Assumption 3 B

7'7
n

L0 < .

Combining those in the sum of squared errors part of our objective function
%(XU - Z'Yv)/(Xv - Z’Yv) = ‘712/ + (v — %9)/0(% — ’yg) (19)
Next we consider the penalty term in our objective function. First since ¥, = Op(n—l/ 2),
by = Op(n™?).

Then by Assumption 4

An
g = 0,
So
Ay e )
T2 2 kbl 0. (20)
j=1k=1
So since Ly (7y) is convex by (19)(20)
Lu() * 0y + (1 = 710)Cy — 1) = L(). (21)
v = Op(1), (22)

by applying the standard results in Anderson and Gill (1982), Pollard (1991) as in the proof of

Theorem 1 in Knight and Fu (2000). So given the last two results we have the consistency of our
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estimator, using

argminLy () 2 argminL(v,).

See that unique minimum is at 40 for the limit term in (22) given that C is full rank. So the

consistency is proved and

(i). We start the asymptotic normality proof now. Set @ = \/n(5, —1Y). Specifically we can

write 4, as

9+

and define the following p x 1 vector for each j =1, --- ¢

X B+ H
0o, Y .
v+ o
Wyt
Note that
= argmin¥, (u),
where

Q
i)

where u : pg X 1 vector, and w is stacked in the same way as 7,:

uy
(24)

S
I

Uq

each uj, j =1,2---¢q,is p x 1 vector. Now we can consider the following function

S

Valu) = Uu(u) —U,(0

7'7 Z’ Y
n
An

+ ﬁzzwk\f "yjk+u]k/\/>| "7?k|) (25)
j=1 k=1

I
:\
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See that @ = argminV,,(u). Then by Assumption 3

77
n

N

L0 < .

Next by Assumption 5 (via Central Limit Theorem)

Z'vy 4

The limit for the penalty in (25) will be discussed next. Depending on 'y?k there are two possibilities.
First if’y?k #0(j=1,2,---q0,k=1,2,---p) we have
Wi 2 o
’ ‘V?JJT
So in that case
V(IS + wii/n' 2| = gl) = wiesgn(3e),

and with Assumption 4 (\,/n'/? — 0)

An
Skl (g + /02| = yge)] = 0.

The second case is when 7?]@ = 0, we have
V([ 4 win/n P = 1Y%l) = [ujnl,

and with w;;, definition and in the case of zero parameters (”y?k = 0) since the first stage estimator

nl/z:yﬂf = Op(1),
An An

1z Wik = mnT/Q(nl/z’Yj )" B oo (26)

by Assumption 4. So unless wu;; = 0

Clearly given the above results, and defining u 4 as the first pgy elements of w vector which is of
dimension pq, and by C1; being the pgy X pqo upper left block in C' matrix, and W 4 being the first
pqo elements of pg vector W, (These designations are done since A = {1,---qo} without losing any

generality)

Vn(u) - V(U) = U_IAOlluA - 2quWA lf Ujk = Oa] =qo+ 17 to 7Q7k = 17 P

= oo otherwise.
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Since V,, is convex and the unique minimum of V' is 01_11 W 4, then by epiconvergence result of
Knight and Fu (2000) we get
~ d _ _
g — N(O, CHlQHCHI)’

since W4 = N(0, 1) where 17 is the full rank, pgy x pgo upper left block in Q (pg x pg matrix).
Also

~ d
UApe — 07

where A° = {qp+ 1, -+ ,q} by 4 definition. So the limit theory is done.

(ii). Now we prove selection consistency. First Vj € A, the consistency shows that
P(je A, — L

We have to show also, Vj' ¢ A,
P(j' € Ay) — 0.

So for all j' ¢ A, take an event j' € A,,. By Karush-Kuhn-Tucker optimality condition

275/(Xy — ZA) = Aa(tji1, -+ ) -

Also see that by Assumption 4, for k =1,---p, as in (26)

Mtlyr  An a1 »

= n — = 00
nl/2 nl/2 \nl/Q’Yj'k\T

Rewrite left term of the first order condition above as

270, v = Z(w =) 225w 227

_ 1/2 5, A0
n1/2 - n1/2 n n (’YU ’yv) (27)

By the arguments in the proof of the asymptotic normality, Assumptions 3,5, Theorem 1(i), (27)

converges to a normal distribution, so

P(j € An) < P2Zj)(Xy — ZA) = An(tj1, -+ ,1Djrp)') — 0.

Q.E.D.
Proof of Lemma 1. The proof consists of two parts. First we prove a result regarding refined
loadings, then the asymptotic bias result is presented.

Proof of Refined Loadings. First, we need to prove
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for j = 1,--- ,p, where ’R’? = limy, o % Yoy Ezfjvf for the refined loadings. We show the proof

for refined loadings. The proof for initial loadings are very similar, and hence it is skipped. Define,

for each j =1,2---  p,

and 0; = d; — 23 ImitialLasso- Next denote

1
~2 2.2
i = o 2%V
n =1
We want to prove specifically
~9 o ~2 p
s 1 71 %0, 29)
~2 _ (_0\2] P
pax |5 — ()7 = 0, (30)

Step 3 in p.37 (via Assumption B.1) of the proof of Theorem 1 of Belloni et al (2012) provides
the proof of (30). Then proof of Lemma 11 of online appendix in Belloni et al. (2012) shows (29)
via Assumption B.1.

Q.E.D.

Proof of Asymptotic Bias of Lasso. Now, we assume consistency of Lasso type estimator
that is already proved in Theorem 1 of Belloni et al. (2012). Next, we provide the important step in
proving the asymptotic bias of Lasso type estimator of Belloni et al. (2012). Denote the objective
function of Belloni et al. (2012) as

n p
Qn(u) = (vi —'2i/n' )2 + X |7(vj0 + ui /n'?)],

i=1 j=1

where @ minimizes @, (u). Now see that @ also minimizes the following

Vn(u) = Qn(u) - Qn(0)>

where

Va(u) = Y {lvi —u'zi/n' )2 —of)

=1

p
+ A IFi(vo + wi/n* )] = [77v0).
j=1
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Then the first part of proof follows much from Theorem 2 of Knight and Fu (2000) and
n
Z{[Uz — 'z /n'?? — v} L _2/'W u'Yu, (31)
i=1

where W = N(0,3z,), and n=t Y1 | 22/ L, 5. This is true through Law of Large Numbers and
the Central Limit Theorem given Assumption B.1, and Lemma 3, Condition 1 in Belloni et al.

(2012). Next if the true v are zeroes then the penalty term is:

p p
AD 175 (vjo + wi/n' )| = [575500] B Ao D I duyl, (32)
i=1 i=1

by (28), and the Assumption of A/n'/? — Xy > 0, and vjo is the jth element of vy vector, j =

1,---,p. If the 7y coeflicients are nonzero then the limit of the penalty is
p P
. . P
AD ol + g /n' )] = [705]] 2 Ao D wiugsgn(vioms), (33)
j=1 j=1

where we use again the proof of (28) and consistency of 4r4ss0 in Assumption B.2. Now combine
(31)(32)(33) to have

P
Vi (u) < V(u) = =2u'W + u'Su + Ao Z[w?ujsgn(wjowg)l{,m#()} + |uj7r;-)|1{%.0:0}]. (34)
j=1
Q.E.D.

Proof of Lemma 2. Note that 4r; for all j = 1,---p represents the estimator in (5). The
proof is similar to the proof of the Proposition 1 of Zou (2006). It consists of two parts. The first
part is a repeat of Zou (2006) with no change. In the second part of the proof, there is a change
due to usage of different penalty factor in Belloni et.al (2010) Lasso estimator.

The first part shows us the main idea behind the proof, hence it is repeated from Zou (2006).
We set

An = {7 Ar; # 0},
A=1{j:yrjo # 0}

For ease of use set also 79 = (v.4,04c), where v 4 are coefficients that corresponds to the set of
nonzero instruments (relevant ones), and 04c represents the zero coefficients.

Let u* = argminV (u) in (34), then
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By Lemma 1 /n44c -, u’e = 0, where 44 represents the estimators that correspond to ”zero
population coefficients”, and A = {j : 7; = 0}. Note the typo in the proof of Proposition 1 in Zou
(2006) where A is used instead of A¢ in the previous argument.

But by Portmentaeu Theorem 1.3.4.iii in van der Vaart and Wellner (1996)
limsup P(v/n9; = 0,Vj ¢ A) < P(uj =0,Vj ¢ A).

We need to show
c=Pu;=0,Vj¢ A <1 (35)

The second part of the proof has some modification to Zou (2006) since Lasso of Belloni et al.
(2012) is different, in penalty terms, compared to regular Lasso. We only analyze the case of
Ao > 0, the case of A\g = 0 is trivial since ¢ = 0 in (35) (the same in Zou (2006)) hence it is omitted.
By Kuhn-Tucker optimality condition, and ¥ being defined in Lemma 1,

—2W; +2(3u"); + )\oﬂ'?sgn(ﬂ'?’)/jo) =0,Yj € A
| — 2W; + 2(Su®);| < Aoy, Vi ¢ A
We introduce notation that will be useful for the proof. See that

Y11 212
o1 o2

Y=

)

where ¥17 is a square matrix, corresponds to limit of second moments of relevant instruments, it
is also invertible and positive definite, o9 corresponds to limit of second moments of irrelevant
instruments, and X9 is the limit of sample cross product of the relevant with irrelevant instruments,
Yo1 = Xy Wy are Wy’s where j € A, Wye represents W;’s where j € A°. Also observe that
u®e = 0, u’y represents the optimal u with respect to nonzero coefficients. Similarly 7r2l is the
vector of 779 where j € A, and 7'('94.; is the vector of 7;, where j € A°.

If u; =0, for all j ¢ A, then the optimality condition can be written as componentwise
—2W 4 + 28110’y + Aomysgn(nya) = 0. (36)

| — 2Wae + 2801u%y| < Aomlhe. (37)

Note that this is the difference with Zou (2006) proof, we have 7° terms in (36)(37). Next combine
(36)(37) componentwise

| = 2Wae + T 2 2Wa — AorGsgn(m9v.4))| < Momohe.
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This means that
¢ < P[| —2Wye + EglEfll(QWA — )\077945gn(7r947A))] < )\07r94c] < 1.

Note that in the above equation if the truth is zero coefficient, the weight in adaptive lasso takes
positive infinite value unlike 7TE)4C of heteroskedastic lasso and makes the right hand side probability
equal to one, in the case of adaptive lasso. So just from this equation, also it is possible to compare
the adaptive lasso and heteroskedasticity consistent lasso of Belloni et al. (2012). Q.E.D.

Proof of Theorem 2.

The first part of the proof (equations (38)-(40)) follows from the proof of Theorem 3 in Zou
(2006). Zou (2006) specifically uses iid standard normal random variables in the proof. Since we
allow for Gaussian and heteroskedastic data, our proof is different from his. First, we add and

subtract from the risk formula

E[i(u i)l = E[é@—wwm—w
= E[i(ﬂz z)]+E[§;( — 1))
+ 2B fuilwi — )] — 2] sz — 1)) (38)
Note that " " "
E[;(% i)l = E[; v = Z; o7
szz i — 1) _E[Zn;(uﬂrvlv,: Z Zaz,

since p; is constant and v; has zero mean. Substituting these in (38) we obtain

n n

E[Z(ﬂl - Ni)2] = E[Z Z o; +2FE Z Nz i ,uz (39)
i=1 i=1
Now we consider the first term on the right hand side of (39). Using (10) for each ¢ = 1,2--- |n

we have
22 if \:Ui|<)\1/1+T

A 2
(i — )" = 2 1/1+T-

40

We will benefit from (40) in evaluating the first term on the right hand side of (39). Next, we
consider the third term on the right hand side of (39). First by Stein’s Lemma (Lemma 5.1 in de
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la Pena et al. (2009))

Li — M

)] max o <FE

Z gg] (41)

B> fui(zi — pa)] < B[ fui(
where max; 0; < d and 0 < d < 00, 0; > 0. Since by (10), for each i = 1,2--- |n

op _ 0 if ol <A

_ . 42
Ovi 1+ e if !%\>A1“+T (42

Combine (40)(41)(42) in (39) we can rewrite

. n
N 9 |
EZ;(M - Mz‘) < EZ T {I:r |<Al/(+7)y +EZ <x ‘27— {|$ |>)\1/(1+,)}> Z;Ui
- 2),
+ F Zl (2 + 7-1;1|1+T> 1{fﬂi|>)\2/(1+’>}‘| d

NP 2)\;d
+2 |3 (e + 24+ ) 1{@'“““”]

i=1

- Z o2 (43)

Z Z; {|; |<)\1/(1+T)}

=1
1/147 . . . 1/147
By usmg |z;] < A, for the first right hand side term in (43), then usmg |lzi| > A, to get
ml'% < IMI'”/I*T in the second term on the right hand side of (43) and B ‘1+T <1
n n
N 2/1 /1
EY o= pl < 3 INTTP(m] < X))
i=1 i=1
n n
+ Dol@d+2d/m + NP (| > AT = 3o
i=1 i=1
n
< NN 4 2d 4 24/ (44)
i=1

Now we will simplify this expression for further use. We can rewrite, using \; = (QJflogn)(HT)/ 2

) 2d  2d 1 °0d  2d 1
NT L od 4 2d)r = o (2logn + atT 3) S ail2logn + ——s 4+ — ]
o min; o; T min; o;

)

2
< o?[2logn + 2¢ + =],
T
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where ¢ > —%— . So the bound in (44) can be written as
min;o;

n n

B[ — o)) < [logn +2¢+ 2 Yo7, (45)
i=1 =1

In the next part of the proof we will get a new bound for the estimated risk, and then we

compare with the one that we found in (45). Use (43)

N )2 2 7 s 2 . 2
E[;(Mz pi)] < E;% +E[Zl (’xi‘%— +2d + Tl T xz) 1{|zi|>/\;/1+7}] ;Ui
"N 2)\id ) =,
- E[Z; (mpr +2d+ || T - xl) 1{|zi\>/\j/1+f}] + Z;Nz (46)
When |z;| > )\3/(1+T),
)\12 )\12 2/14+1
S N )
and
1 1
’xi‘QT < )\27-/(14-7')' <48)
S0
A 27 o N 2/(2+7)
mE TN S e TN
By (47)-(49), if [z;| > A}/*7)
A
P z? <0. (50)
So use (50) in (46) to have
n A n 2Nid n
EZ(N@ - Ni)2 <E Z (W + 2d> 1{\xi\>>\?/(1+7)} + ZN? (51)
i=1 i=1 ! ' i=1
When |z;| > )\3/(1+7) we can rewrite (51) as
n A 2 n UiLan n
B (= w)’) < (= +24) Y- Pllail > N7+ 374 (52)
i=1 i=1 i=1

Now we try to evaluate the P(|x;| > )\1/(1+T)). Set t; = )\E/HT, and proceed as in p.1427-1428 of

)
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Zou (2006) to have

2
Plzi| > t) < —————e /207 o2,
27rai2ti
< (logn) '/ + 23, (53)
n 7'['0'»2

1

where we use t; definition and A\; = (203logn)(1+7)/ 2 in the last step. See also the equations after
(A.12) in Zou (2006). Use (53) in (52)

n

g 4d 1 Ad
~ 2 —-1/2 2
EZ (i =) < (= +4d)mzax(2 (logn)™/%) + (= +4d+1);ui
4d 1 61/2 1 4d =
< - /2 R 2
< () logn) ™ (- dd+ ) ;1 i (54)

by ¢,d definitions. Add 2logn ", u? and (2logn + 1)(01/2/d1/2)7(logn) 12 to (54) so that it
is compatible with the bound in (45)

cl/?

Ad
EZ < (2logn + — +4d + 1)2fd1/2 (logn)~

4d =
12 4 (2logn + — +4d+1) >l (55)
=1

Then set b = max(2¢c,4d + 1). Use b definition to rewrite (55) as
E (21 b1 2 logn) 12 + (21 S
Z ogn + — + )2fd1/2<ogn) + (2logn + — + );ui- (56)

Next add (2logn + b+ g)cl/g/dlﬂﬁ(logn)_l/2 to (45) and use b definition as well to have

0 — (s /2 2
E E (f1s — pi)? < (2logn +ot b)—= 2\f d1/2 (logn) + (2logn +o+ b) E_l 7. (57)

i=1 %

The result can be deducted from (56)(57).
Q.E.D.
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