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Abstract

In this paper we use adaptive lasso estimator to select between relevant and irrelevant instruments

in heteroskedastic and non Gaussian data. To do so limit theory of Zou (2006) is extended from

univariate iid case. Then we use the selected instruments in generalized empirical likelihood esti-

mators (GEL). In this sense, these are called hybrid GEL. It is also shown in the paper that Lasso

estimators are not model selection consistent whereas adaptive lasso can select the correct model

in fixed number of instruments case. It is also shown that adaptive lasso estimator can achieve

near minimax risk bound even in the case of heteroskedastic Gaussian data. This is a new result

and extends the standard normal iid data in Zou (2006). In simulations we show that hybrid GEL

estimators have very good bias and mean squared error compared with other estimators.
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1 Introduction

One of the important issues in economics is selection of the instruments. We think that this is

very important since a lot of empirical cases involving labor, institutional economics deal with very

limited number of instruments. For example Acemoglu, Johnson and Robinson (2001), Acemoglu

and Johnson (2006), Card (1995) papers use 1 or at most 2 instruments with one endogenous

variable at hand. It is critical then in those cases to see whether we have strong instruments or

not. If we have one instrument in just identified case, and it is weak, the second stage coefficient is

inconsistent, see Staiger and Stock (1997). If we have more than one instrument and one endogenous

variable then the second stage regression will give consistent estimate, but in finite samples we will

have bias. Our simulations in the paper show this.

In many instruments setup, there have been several papers analyzing instrument selection re-

cently in the literature. Donald and Newey (2001) target Mean Squared Error of second stage

regression coefficients. Theirs do not take into account the weakness of the instruments. Recently,

Kuersteiner and Okui (2010) use model averaging to pick up instruments. Their approach is similar

to Donald and Newey (2001), and improve on Mean Squared Error of second stage coefficients. In

a landmark paper Belloni, Chen, Chernozhukov, and Hansen (2012) introduce a new heteroskedas-

ticity consistent Lasso type estimator to pick optimal instruments among many of them. This is

a very important leap over the statistics literature as well as econometrics literature. They are

able to establish performance bounds for Lasso estimator for the first time in heteroskedastic, non

Gaussian data. This is very difficult to achieve, since all the results in statistics is for Gaussian and

iid data. Belloni, Chen, Chernozhukov, and Hansen (2012)(Belloni et al. (2012) from now on) use

moderate deviation theory for self normalized sums to solve this problem. In the meantime, this

results in a completely new Lasso based estimator which depend on the residuals as the penalty.

Our paper is interested in selecting instruments in a fixed number of instruments unlike the

many instruments case. Toward that end, we benefit from the recent statistics literature. In

statistics related to model selection, and estimation, Lasso, Bridge are analyzed by Knight and

Fu (2000). Caner (2009) analyze GMM based Bridge estimation. Caner (2009) does not consider

instrument selection and only considers model selection in orthogonality restrictions. Recently, in

statistics, smooth penalty functions are introduced by Fan and Li (2001, 2002). However, one of

the most recent shrinkage based estimator in statistics is adaptive lasso of Zou (2006). This has

optimality properties, and easy to estimate compared to Bridge, and it is also shown there that

Lasso estimator is not model selection consistent asymptotically. Lasso, in fixed number of regressor

case in least squares, cannot select the correct model with probability one, see Proposition 1 of Zou

(2006). Zou (2006) also shows that adaptive lasso is model selection consistent, and achieves the

near minimax risk bound in iid Gaussian data. Adaptive lasso is also oracle efficient, estimates the

nonzero parameters with standard efficient limit in least squares and estimates the zero parameters
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as zero with probability one.

Our paper applies adaptive lasso to instrument selection problem in the reduced form estimates,

and then run generalized empirical likelihood estimators in the second stage regression. The main

idea here is to benefit from the very good model selection properties of adaptive lasso in the first

stage. We show that adaptive lasso in the first stage is model selection consistent. In other words,

it can pick the relevant instruments with probability approaching one. Given that we have a better

bias and MSE for the structural parameters in the second stage. We also extend the near minimax

risk bound in Zou (2006) to non iid Gaussian data. In addition to that, we show a variant of Lasso

is also subject to model selection problem, whereas adaptive lasso is model selection consistent.

Adaptive lasso can differentiate between the irrelevant and strong instruments. Simulations in

the paper show that using F test as an indicator may be problematic. In the other simulations,

adaptive lasso performs very well in terms of bias/MSE of second stage coefficients compared with

another Lasso based estimator, Donald and Newey (2001) procedure, model averaging estimator

of Kuersteiner and Okui (2010), LIML, Fuller, and heteroskedasticity consistent version of Fuller

estimator of Hausman et al. (2012).

Recently we come across with two working papers which apply shrinkage based methods to IV

regression. The first one, independently written, is by Garcia (2011). He devises adaptive lasso

for the case of many weak instruments. Note that the asymptotics (of fixed number) of selection

of instruments are entirely different from the many weak instruments case. The next paper is by

Shi (2011). There the issue is the structural equation parameter selection in increasing number

of parameters case with shrinkage. This is also important contribution since it is important to

handle high dimensional problems in econometrics. Shrinkage methods will be immensely useful in

these cases to applied researchers. One very important contribution to this literature is by Leeb

and Pőtscher (2005). They show that if the parameters are varying by the sample size, then the

shrinkage methods cannot be uniformly consistent, and hence cannot select the true model with

probability approaching one. For this reason, it is impossible to select the correct instruments

with adaptive lasso in the weak instruments context when their number is fixed. We analyze this

situation also in simulations. Our theories are based on fixed parameter asymptotics, and hence is

not subject to the criticism of Leeb and Pőtscher (2005). Leeb and Pőtscher (2005) idea applies to

least squares framework. However, we are interested in second stage regression estimates. We show

that finite sample distribution of second stage coefficients is not bi-modal, and normally distributed.

This is shown in the simulation section in a simple overidentified case.

Section 2 provides the limit theory for adaptive lasso when relevant and irrelevant instruments

exist. Adaptive lasso picks the relevant ones and eliminates the irrelevant ones, and uses this

information in second stage GEL. Section 3 provides the result that even a new version of Lasso

is model selection inconsistent whereas adaptive lasso can select the model correctly in the case of

fixed number of instruments. Section 4 provides the algorithm that is used. Section 5 introduces
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an oracle inequality. Section 6 carries out extensive simulations. Appendix provides all the proofs.

‖.‖, ‖.‖∞ represent the Euclidean norm, and maximal value of a vector respectively.

2 The Reduced Form Estimation Via Adaptive Lasso

In this section we show that we can use adaptive lasso in multivariate setting to select and estimate

the reduced form coefficients simultaneously. In this sense, this section extends the univariate

adaptive lasso of Zou (2006). So we will be able to eliminate the irrelevant instruments and keep

the relevant ones. In matrix form the reduced form equations are:

X = Zγ0 + ν,

where X : n × p, Z : n × q, and γ0 : q × p matrix, we also have q ≥ p, q represents all the fitted

instruments. We can rewrite that

X = Z1γ
0′
1 + Z2γ

0′
2 + · · ·+ Zqγ

0′
q + ν, (1)

where γ0
j : p× 1 vector j = 1, 2 · · · q. Each Zj is n× 1, j = 1, · · · q.

Next we can write these in vector form as:

vecX = (Ip ⊗ Z1)vec(γ0′
1 ) + (Ip ⊗ Z2)vec(γ0′

2 ) + · · ·+ (Ip ⊗ Zq)vec(γ0′
q ) + vec(ν).

We can write this in new notation as:

Xv = Z̃1γ
0
1 + · · ·+ Z̃qγ

0
q + νv, (2)

where Xv = vecX, Z̃j = (Ip ⊗ Zj), νv = vec(ν). So Z̃j is np× p matrix for j = 1, 2 · · · q, and Xv is

np× 1 vector.

Note that γ0
j are the true population coefficient vectors, j = 1, 2, · · · q, and the true number of

nonzero vectors are q0, with q0 ≥ p. We can further rewrite (2)

Xv = Z̃γ0
v + νv, (3)

where Z̃ = [Z̃1, · · · Z̃q] (np× pq matrix), and

γ0
v =


γ0

1
...

γ0
q

 ,
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where γ0
v : pq × 1 vector. The objective function is:

γ̂v = argminγv [Xv − Z̃γv]′[Xv − Z̃γv] + λn

q∑
j=1

p∑
k=1

ŵjk|γjk|. (4)

See that the weights are ŵjk = |γ̃jk|−τ , where γ̃jk is the
√

n consistent LS estimator, and

0 < τ ≤ 1. To understand these better note that γv is pq vector, so these are stacked p× 1 vectors,

γj , j = 1, · · · , q.

In these q vectors, the nonzero ones will be denoted by

A = {j : γ0
j 6= 0p},

where 0p represents a p × 1 vector of zeros. Without losing any generality, we can designate the

last γ0
q0+1, γ

0
q0+2, · · · γ0

q as zero vectors (all p× 1 cells are zero). This can be written as

Ac = {j : γ0
j = 0p},

j = q0 + 1, q0 + 2, · · · q. So we can represent A = {1, 2, · · · , q0}. Now we assume that for all

relevant instruments (j = 1, 2, · · · , q0) all p cells in vectors γ0
j are nonzero. This is just done for the

simplicity. We will also talk about the possibility of zero cells in γ0
j , j = 1, 2 · · · q0 after Theorem 1.

Assumptions.

1.
ν ′vνv

n
=
∑n

i=1

∑p
k=1 ν2

ik

n

p→ σ2
ν > 0,

where σ2
v = limn→∞

1
n

∑n
i=1

∑p
k=1 Eν2

ik. Also this variance is finite.

2. We have the following Law of Large Numbers result:

Z̃ ′νv

n

p→ 0.

3.
Z̃ ′Z̃

n

p→ C < ∞.

Also matrix C (pq × pq matrix) is of full rank. We can write C as

C =

[
C11 C12

C21 C22

]
,

where C11 is positive definite full rank, and symmetric submatrix of dimensions q0p× q0p.

4. For the penalty term λn/
√

n → 0, λn

n1/2 nτ/2 →∞ and 0 < τ ≤ 1.
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5. We assume the following Central Limit Theorem

Z̃ ′νv

n1/2

d→ N(0,Ω) ≡ W.

Ω is pq × pq matrix, and it has Ω11 as the q0p× q0p upper left block, as positive definite, full rank

matrix.

Note that Assumptions 1, 2 , 3 , 5 are high level assumptions. These can be proved via suitable

moment conditions on the errors and the instruments as in Davidson (1994). Note that we can

use independent data for Theorem 1 below. Assumption 4 is used in Zou (2006). This shows the

behavior of the penalty. The main difference with Zou (2006) is 0 < τ ≤ 1. This is needed for the

consistency proof. This is not shown in Zou (2006).

Set An = {j : γ̂j 6= 0p}. Note that γ̂vA represents the adaptive lasso estimator for the first q0p

elements in γ̂v. Let γ0
vA (q0p × 1 vector) represent the corresponding true nonzero elements. The

following theorem generalizes adaptive lasso of Zou (2006) from univariate, iid case to multivariate,

heteroskedastic case. Oracle property is also preserved as in Zou (2006).

Theorem 1.Under Assumptions 1-5,

(i).

n1/2(γ̂vA − γ0
vA) d→ N(0, C−1

11 Ω11C
−1
11 ).

(ii).

lim
n→∞

P (An = A) = 1.

Note that A definition can be changed to A′ = {j, k : γj,k 6= 0, j = 1, · · · q, k = 1, · · · p}. Our

definition of A is just for simplification. One issue is how the results may be affected when we

have a combination of zero and nonzero cells in first q0 γ0
j vectors. From the proof of Theorem

1, we see that γ̂v is pq × 1 vector, but each cell in that vector is penalized separately. So we will

find zero and nonzero cells in pq × 1 cells. So as an example, if p = 2, q = 3, q0 = 2, we may

estimate γ1 = (1, 0)′, γ2 = (2, 3)′ and γ3 = (0, 0). So our method will find that γ12 = 0,(first

coefficient vector, 2nd cell) but still clearly that γ0
1 is relevant since γ11 = 1, and the instrument

corresponding to that will be put in the second stage regression. But since γ3,1 = γ3,2 = 0, the

third instrument will not be used in second stage regression. An irrelevant instrument means that

all p cells of γj are zero.
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2.1 Second Stage Regression

Since we find the relevant instruments in the first stage via adaptive lasso, we can use them in the

second stage regression . In other words,

yi = x′iβ + εi,

for i = 1, · · ·n, and β : p × 1 vector. Now assume that the instruments are uncorrelated with εi.

Then the first estimator to consider is two step GMM

β̂GMM = (X ′ZrŴZ ′
rX)−1(X ′ZrŴZ ′

rY ),

where Y = (y1, · · · , yn)′ X is n × p matrix and Zr = [Z1, · · · , Zq0 ] : n × q0 matrix. Ŵ is the

standard efficient weight used in GMM. Application of the standard asymptotic theory to β̂GMM

will provide the efficient GMM limit.

Define the function ρ(ι) where ι is a scalar, and the function is concave on its domain. Next,

we consider generalized empirical likelihood (GEL from now on) estimators for the second stage.

These are defined in Newey and Smith (2004).

β̂GEL = argminβ∈B sup
δ∈∆n(β)

n∑
i=1

ρ(δ′gi(β)),

where B is a compact subset of Rp, and ∆n(β) = {δ : δ′gi(β) ∈ V, i = 1, · · · , n}, V is an open

interval containing zero. Since this is a linear model gi(β) = Ziεi = Zi(yi − x′iβ), and Zi is q0 × 1

vector. When ρ(ι) = ln(1 − ι) this is empirical likelihood estimator, when ρ(ι) = −exp(ι), this is

called exponential tilting, and when ρ(ι) = −(1+ι)2/2, this is called continuous updating estimator.

For standardizations, and further detail, see Newey and Smith (2004). Using the correct number of

relevant instruments q0 from the first stage will result in standard GEL limits as shown in Newey

and Smith (2004).

An important point is why we use immediately Zr matrix of dimensions n× q0 (i.e. the correct

number of instruments). The reality is we have q̂ number of instruments from the first stage. But

Theorem 1(ii) clearly shows that q̂ − q0
p→ 0. Selection consistency provides the reason to use the

correct number of instruments in the second stage. We could have shown this in extensive proofs,

but this is not difficult to show, and could have unnecessarily lengthened the proofs. But to show the

main argument, take the linear GMM and analyze ‖Ẑ ′ε/n1/2‖ where Ẑ = (Z1, · · · , Z|q̂−q0
|). This

is one of the limit terms. Note that Ẑ is a n×|q̂− q0| dimensional matrix, where q̂ is the estimated

number of relevant instruments in the first stage (reduced form). See also that ε = (ε1, · · · , εn).

‖Ẑ ′ε/n1/2‖ ≤
√
|q̂ − q0|‖Z ′ε/n1/2‖∞ = op(1),
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given stochastically bounded ‖Z ′ε/n1/2‖∞. The other terms can be treated similarly, so both in

linear GMM, linear GEL, selection consistency provides us with starting the second stage with

correct number of relevant instruments. This does not make any difference in the limit. Note that

in the simulations we use estimated number of instruments from the first stage and then put them

in two step GMM and GEL in the second stage.

We could have done model selection in the second stage given the number of instruments, but

we believe that they have to be analyzed jointly. There may be identification problems with this.

But we believe this is an open question to be analyzed. We also develop theory for the case of using

the predictors from the first stage to be used in second stage. But this did not get us good finite

sample results in simulations, so we do not report them to save space.

3 Asymptotic Bias and Selection Inconsistency of Lasso

This section will analyze certain Lasso estimators that are used in the literature. The first one is

regular lasso, and it has asymptotic bias and is model selection inconsistent as shown in Theorem

2 of Knight and Fu (2000). So we refer the reader to Knight and Fu (2000) for details. The second

one is heteroskedasicity consistent Lasso type estimator of Belloni et al. (2012). Their estimator

is a big leap in the literature. This estimator, in large number of instruments case, can choose

optimal instruments, and has the oracle property for the instrumental variable estimation. This

estimator also works well with heteroskedastic and non-Gaussian cases. Here we show that with

fixed number of instruments, there is an asymptotic bias in estimating the relevant instruments

with their method (a variant of lasso as well as post-lasso which is least squares after running

least squares), and this affects selection consistency in return. Note that the setup of Belloni et al.

(2012) involves many instruments, and hence we are not analyzing that case. We ask ourselves the

question that what if their method could have applied to fixed number of instruments, can we have

selection consistency? Since it has also data dependent weights as adaptive lasso here, this will be

a good estimator to compare.

But we want to make one point crystal clear, their paper is path breaking in this literature.

Our paper is not attempting to take away from large contributions that they made. So we setup

the model in Belloni et al. (2012) with fixed number of instruments.

yi = d′iα0 + εi,

where di is kd × 1 endogenous variable vector, and

E[εi|zi] = 0,

for each i = 1, · · · , n. zi is p× 1 vector of instruments, and p is fixed, unlike Belloni et al. (2012).
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Next the reduced form equation is

di = z′iγ0 + vi,

where vi, εi are correlated, and γ0 is p× 1 vector, E(vi|zi) = 0, p ≥ kd. With no loss of generality,

we abstract away from including control variables in both reduced form and structural equations.

Also we set kd = 1 to simplify the notation. With a vector of endogenous variables, kd > 1, we

could have followed the methodology in section 2, and sum the penalty terms over all kd times p

parameters (reduced form matrix elements). Then our Assumption B.1 will be true with the added

max1≤l≤kd
condition. To simplify the proofs/assumptions we set kd = 1.

In Belloni et al. (2012), quite sensibly the number of relevant instruments are approximately ”s”

(Condition AS in Belloni et al. (2012)). This is a very good idea in their case, since with increasing

number of instruments (in their case p →∞), it makes sense to describe the relevant instruments

as approximate number. However, in our case we setup the fixed number of instruments as possible

instrument candidates, and then the true number of instruments is fixed and equal to s. In a simple

applied work it is sometimes difficult to find valid instruments (see Acemoglu et al. (2001, 2006))

so this is a reasonable assumption in our case.

Next we define the heteroskedasticity consistent Lasso:

γ̂L = argminγ [
n∑

i=1

(di − z′iγ)2 + λ

p∑
j=1

|γj π̂j |], (5)

where they have two step process in estimating γ.

First, they set, for each j = 1, · · · p,

π̂j =

√√√√ 1
n

n∑
i=1

z2
ij(di − d̄)2,

where d̄ = n−1
∑n

i=1 di. By using this in the Lasso formula above they get Initial Lasso. Then after

getting ”Initial Lasso”, they setup the following refined loadings

π̂j =

√√√√ 1
n

n∑
i=1

z2
ij v̂

2
i , j = 1, · · · p

where v̂i = di−z′iγ̂Initial−Lasso. After using the refined loadings in (5) objective function we get γ̂L.

This is equation (2.4) in Belloni et al. (2012). The steps to get lasso estimator is well described in

Algorithm 1 in Appendix of Belloni et al. (2012). They only select the instruments in the reduced

form, and there is no model selection in the second stage. We will follow this sequence in this part

of the paper as well. We will not analyze post lasso estimator in their paper since this is just a
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regular-unpenalized least squares estimator after running lasso estimator with refined loadings.

Before the assumptions we introduce some of the notation that is used in Belloni et al (2012).

Let ‖fi‖2,n =
√

1
n

∑n
i=1 f2

i , for a generic random variable fi. Then let En(fi) = 1
n

∑n
i=1 fi, and

Ē(fi) = limn→∞ E[ 1
n

∑n
i=1 fi], and d̃i = di − Ēdi, 1 ≤ i ≤ n. We make the following assumptions

for the following Lemmata:

Assumption B.1

(i).

max
1≤j≤p

[Ē(d̃i)2 + Ē(z2
ij d̃i) +

1
Ē(z2

ijv
2
i )

] = Op(1).

(ii).

max
1≤j≤p

Ē(z3
ijv

3
i ) = Op(Kn).

(iii).

K2
nlog3n = o(n).

(iv).

max
1≤j≤p

z2
ij

logn

n
= op(1).

and

max
1≤j≤p

|Ēn(z2
ijv

2
i )− Ē(z2

ijv
2
i )|+ |Ēn(z2

ij d̃
2
i )− Ē(z2

ij d̃
2
i )| = op(1).

(v).

‖z′i(γ̂Lasso − γ0)‖2,n = Op(
(logn)1/2

n1/2
).

Assumption B.2

(i). γ̂Lasso is consistent.

(ii). λ/n1/2 → λ0 ≥ 0.

Note that Assumption B1(i)-(iv) are Assumption RF(i)-(iv) in Belloni et al. (2012). Assump-

tion B1(v) is Theorem 1 of Belloni et al. (2012), we use this to shorten the proofs. Before the

limit of Lasso in Lemma 1, set û = n1/2(γ̂L − γ). Define π0
j =

√
limn→∞

1
n

∑n
i=1 Ez2

ijv
2
i for all

i = 1, 2 · · ·n.

Lemma 1. Under Assumptions B.1-B.2 we have the following limit

n1/2(γ̂L − γ0)
d→ argminuV (u),

where

V (u) = −2u′W + u′Σu + λ0

p∑
j=1

[π0
j ujsgn(γj0π

0
j )1{γj0 6=0} + |ujπ

0
j |1{γj0=0}],
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and W ≡ N(0,ΣZv), where ΣZv = limn→∞
1
n

∑n
i=1 Eziz

′
iv

2
i with n−1

∑n
i=1 ziz

′
i

p→ Σ = limn→∞
1
n

∑n
i=1 Eziz

′
i.

This clearly shows the asymptotic bias of Lasso with respect to nonzero coefficients of Belloni

et al. (2012) in the special case of fixed number of instruments. This is similar to the limit of

Lasso in Knight and Fu (2000). Before going over our second result in this section, we introduce

the following notation from Zou (2006). See that

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where Σ11 is a square matrix, corresponds to limit of second moments of relevant instruments, it

is also invertible and positive definite, Σ22 corresponds to limit of second moments of irrelevant

instruments, and Σ12 is the limit of sample cross product of the relevant with irrelevant instruments,

Σ21 = Σ′12. Note that An = {j : γ̂j 6= 0}, and A = {j : γj0 6= 0}.
Next we show that the asymptotic bias results in selection inconsistency of the Lasso type es-

timator considered in this section. Namely, if there is a weak or irrelevant instrument, then this

Lasso may not eliminate that and put the weak instrument in the second stage. In a simple model

with one endogenous regressor and one instrument, this results in inconsistent estimation of the

second stage coefficients through Staiger and Stock (1997) asymptotics.

Lemma 2.Under Assumptions B.1-B.2,

lim sup
n

P (An = A) ≤ c < 1,

where c is a constant depending on the true model.

Our result extends Proposition 1 of Zou (2006) from regular Lasso to the Lasso that is used

by Belloni et al. (2012). We show that usage of this Lasso estimators in fixed instruments context

may lead to inconsistent instrument selection, which may affect the second stage regressions as

discussed above. However, we should note that the Lasso used in Belloni et al. (2012) is for large

number of instruments with an approximate number of relevant instruments, we do not analyze

their estimators behavior in a large instruments context. The Lasso that they introduce is a huge

leap in the literature. They show clearly that with heteroskedastic and non Gaussian data, Lasso

satisfies an oracle inequality. Theirs is very innovative work both on theoretical terms as well

as its practical use. Ours is an attempt to analyze what may happen to Lasso type estimators

in a fixed number of instruments framework. We show that adaptive lasso is immune to the

instrument inconsistency problem. Bűhlmann and van de Geer (2010) also show/discuss better

selection consistency properties of adaptive lasso over lasso in sections 2.8.3, and 7.8.3 of their
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book.

4 Algorithm and The Choice of the Tuning Parameter

Adaptive lasso estimates can be computed efficiently by a modification of LARS (Least Angle

Regression, and S suggesting ‘LASSO’ and ‘Stagewise’) algorithm (Efron et al. (2004)). The

computational efficiency is an advantage of adaptive lasso in practice compared to other Oracle

methods such as SCAD (Fan and Li, 2001) and bridge estimator. In this section, we briefly discuss

the implementation of LARS in adaptive lasso.

In Zou (2006), a simple modified version of LARS can be adopted for the adaptive lasso esti-

mation. It works as follows.

To illustrate the method, we set up a basic linear model, for i = 1, . . . , n

xi = Z ′
iγ + νi. (6)

where xi is the univariate endogenous variable, Zi = (Zi1, . . . , Zid)′ is the associated d-dimensional

instruments, γ = (γ1, . . . , γd)′ is the coefficient vector and νi is the random error with mean 0

and variance σ2
ν . For multivariate model we vectorize X, Z, ν etc., the algorithm works as in the

univariate case. Assume that we fit d predictors and the true model has d0 variables (1 ≤ d0 ≤ d).

Adaptive Lasso Algorithm

1. Create new covariates Z∗
j = Zj/ŵj , j = 1, 2, . . . , d, where ŵj is the adaptive weight as defined

in Section 2. Note that each Zj , Z∗
j is n× 1 vector.

2. Solve the LASSO via LARS algorithm for given λ.

γ̃ = arg min
γ

∥∥∥∥∥∥X −
d∑

j=1

Z∗′
j γj

∥∥∥∥∥∥
2

+ λ

d∑
j=1

|γj | (7)

where X = (X1, . . . , Xn)′.

3. Output is γ̂j = γ̃j/ŵj , j = 1, 2, . . . , d. This is the adaptive lasso estimate.

4. Then we put γ̂j , j = 1, 2, . . . , d, adaptive lasso estimate from Step 3 in equation (8) below.

This provides us a BIC value for a given λ. Note that tuning is explained in details after the

Algorithm.

5. Repeat Steps 2-4 for each remaining λ in a set of Λ (e.g., Λ = {λ1, . . . , λ100}) and record each

BICλ for given γ̂(λ).

6. Choose the pair of γ̂(λ), which minimizes BIC over λ.
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In Step 2 we use LARS algorithm to compute LASSO. Then in Step 3, we convert this to

adaptive lasso solution. Now we explain the simple intuition behind LARS. LARS procedure works

as follows (see Efron et al. (2004) for more details). Assume for simplicity that we have standardized

our explanatory variables to have zero mean and unit variance, and that our response variable also

has zero mean. We start with all coefficients being equal to zero (no variables in the model), and

find the predictor most correlated with endogenous variable x, say it’s the first covariate z1 (as we

can always switch the ‘position’ of the covariates). The reasoning here is the largest correlation

possibly shows significance of the variable, so we take out that variable and include in our model.

Since the covariate z most correlated with the residual is equivalently the one that makes the least

angle with the residual, the name of the method is called ‘least angle regression’. We take the

largest step possible in the direction of this predictor until some other predictor, say z2, has as

much correlation with the current residual. Different from classic Forward Selection which takes

a ‘full step’ with z1, LARS now proceeds in a direction equiangular between the two predictors

z1 and z2 (so that the residual makes equal angles with both covariates) until a third variable z3

becomes equally correlated with the current residual. LARS then proceeds equiangularly between

z1, z2 and z3, that is, along the ‘least angle direction’, until a fourth variable enters, and so on. The

result of γ̂ in Step 2 depends on λ choice. We explain this in detail next in choice of λ. As shown

in Theorem 1 of Efron et al. (2004), a slight modification to LARS can get us the full solution path

of LASSO.

In this part we explain the method to select tuning parameter λ which we use in the adaptive

lasso simulations. Recall that the tuning parameter λ controls the penalty level and therefore the

model complexity. We follow the tuning parameter selector by Wang and Leng (2007). In their

paper, it has been shown that with the BIC method, tuning parameter can achieve the oracle

properties of adaptive lasso. BIC method is selection consistent for adaptive lasso under fixed

predictor dimension and a slight modification of the BIC method is also consistent under diverging

number of parameters (Wang et al. (2009)). In Wang and Leng (2007), they show that the tuning

parameter by BIC method can select the correct model with probability approaching one.

The BIC method for λ selector is to minimize the following

BICλ = σ̂2
λ + DFλ log(n)/n (8)

where σ̂2
λ = n−1 ‖X − Zγ̂‖2, DFλ is the number of nonzero coefficients in γ̂ which is described in

Step 3 of adaptive lasso Algorithm. Z is n × d matrix where the vector form is described in (6).

The reason we use this method is that BIC method can get us the model selection consistency when

the sample size n is approaching ∞. But other methods such as AIC or GCV (generalized cross

validation) can not get us there (see Wang et al. (2009)).

12



5 Oracle Inequality

In this section we extend an important result due to Zou (2006). Zou (2006) provides the proof that

adaptive lasso achieves near minimax risk in iid standard normal data. Here we show that this can

be extended to non iid, but Gaussian heteroskedastic data. The proof is generally different than

Zou (2006). A more general regression setup can be achieved with heteroskedastic non Gaussian

data. This may be possible by using moderate deviation theorems as in lasso of Belloni et al.

(2012). This is a different scope than the current paper and will extend the paper enormously

in volume. Oracle inequalities on general non Gaussian settings are difficult to establish, and the

main aim of our paper is to show that adaptive lasso first step helps in selecting instruments, and

improves on the second stage GEL finite sample properties. The model that we use is from Zou

(2006).

xi = µi + νi,

where νi is the error term, and Eν2
i = σ2

i > 0, for each i = 1, 2 · · ·n. The aim is to estimate µi

with adaptive lasso estimator µ̂i. The risk is defined as in Zou (2006)

R(µ̂) = E[
n∑

i=1

(µ̂i − µi)2].

The ideal risk is defined in equation (16) of Donoho and Johnstone (1994) as

R(ideal) =
n∑

i=1

min(µ2
i , σ

2
i ),

where min(a, b) represents the minimum of the scalars a, b. Adaptive lasso estimate in this case is

derived in equation (5) of Zou (2006) as

µ̂i = argminu[
1
2
(xi − u)2 +

λi

|xi|τ
|u|], (9)

for i = 1, 2 · · · , n, and λi = (
√

2σ2
i logn)1+τ . This type of λi is used in p.113 of Averkamp and

Houdre (2003). Note that the λi is compatible with the results in section 2. We abstract away from

estimation of σ2
i for the main purpose of showing the oracle inequality. As stated in Zou (2006),

since we have one observation for each µi, the weight is defined as |xi|−τ , where 0 < τ ≤ 1. So oracle

inequality here in Theorem 3 extends Zou (2006) from iid Gaussian case to heteroskedastic-Gaussian

data.

So the minimization of (9) above provides us the following as in Zou (2006)

µ̂i =
[
|xi| −

λi

|xi|τ

]
+

sgn(xi), (10)
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where [.]+ denotes the positive part of the expression inside, otherwise this is set as zero, i.e.

[k]+ = k, ifk > 0, otherwise [k]+ = 0. The following is one of the main results of the paper. We

take σi to be the positive root of variance σ2
i . The proof has to be modified slightly otherwise.

Theorem 2.(Oracle Inequality). Let λi = (2σ2
i logn)(1+τ)/2, then

R(µ̂) ≤ (2logn + b +
b

τ
)[R(ideal) +

c1/2

d1/2

1
2π1/2

(logn)−1/2],

where d > maxi σi, 0 < d < ∞, c > d/miniσ
2
i , b = max(2c, 4d + 1). Note that b, c, d, σi are all

positive constants, and do not depend on n.

This shows that even though we have heteroskedastic-Gaussian data, adaptive lasso still attains

the near minimax risk as shown in Zou (2006) in iid-Gaussian case. Theorem 2 here gives us a

basic oracle inequality, extending Zou (2006). In Theorem 3 of Zou (2006), Gaussian-iid case, he

finds

R(µ̂) ≤ (2logn + 5 +
4
τ
)[R(ideal) +

1√
2π

(logn)−1/2].

Compared to Zou (2006), because of non iid Gaussian nature here, our constants b, c, d depend on

σ2
i . In Zou (2006), he takes σ2

i = 1. Theorem 2 is a new result, and the proof technique is not the

same as in Zou (2006).

6 Simulation

In this section we want to answer three questions. The first one is whether our test can do better in

selecting the irrelevant instruments compared with F test? The second question is to compare the

adaptive lasso with a full model (i.e. no model selection) for the second stage regression? The third

question is whether adaptive lasso selection of instruments will deliver better second stage finite

sample results compared with several competitors. The fourth question concerns the bi-modality of

shrinkage estimators in least squares context that is raised by Leeb and Pőtscher (2005). We want

to see whether this bi-modality in the first stage can affect the second stage structural coefficients.

To answer the first question we use a basic setup. To answer the rest of the questions, and especially

the fourth one, we use a model which includes Leeb and Pőtscher(2005) setup.

6.1 Performance of Adaptive Lasso in First Stage Selection

First, we look at the performance of adaptive lasso in the reduced form equation. We report the

percentage of correct model selection, when the nonzero (strong) instruments are estimated as

nonzero and zero (or local to zero) instruments are estimated as zero. The LARS algorithm that

is used to get adaptive lasso estimates as well as tuning parameters are described in section 4.
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TABLE 1: Comparison of Adaptive Lasso with F test

Simulation results for Model 1 Simulation Results for Model 2, t = 3
MSP F-MSP MSP F-MSP

n = 60, σ = 6 .65 .04 .41 .03
n = 60, σ = 3 .98 .74 .81 .79
n = 120, σ = 6 .87 .24 .77 .19
n = 120, σ = 3 .98 1.00 .87 1.00
n = 300, σ = 6 .97 .94 .95 .91
n = 300, σ = 3 .99 1.00 .92 1.00

MSP is the rate of correct model selection, 1 being perfect model selection, 0 being lowest. This is for adaptive lasso.
F-MSP is the rate of F-statistics greater than 10.

We use the following design for the reduced form equation.

X = Zγ + ν (11)

where X is n× 1 endogenous variables, Z is n× 2 matrix of instruments. Zi ∼ N(0, I2) i.i.d. and

E(νi|Zi) = 0 for i = 1, 2, . . . , n. νi ∼ N(0, σ2) i.i.d. Let γ = (γ1, γ2) is 2× 1 true parameter vector.

The IV model has two settings of parameter values:

Model 1 : one strong and one irrelevant instrument. γ = (2, 0)′

Model 2: one strong and one weak (local to zero) instrument. γ = (2, t√
n
)′, where t is a

constant real number

In both models we simulated 100 datasets for each combination of (σ, n). We use three

sample sizes, n =60, 120 and 300 and σ takes on values 6, 3 in corresponding model setup. We set

t = 3. This is a small scale simulation, since LARS is computationally intensive. Still, this provides

us with the information that F test is not working well to separate the weak instrument from the

strong one.

In Table 1, we use F test (joint test on both instruments) on the reduced form equation and

report the percentage of when F-statistic is greater than 10. It is common in applied studies

that diagnose instruments to be weak if F-statistic is less than 10 (Staiger and Stock, 1997). F-

statistic is also approximately increasing with concentration parameter which is a unitless measure

of instrument strength (Stock et al. (2002)). Note that we are not using 11.39 as the critical value

as advocated by Stock et al. (2002)). This could have made the results much worse for them.

We will compare the model selection performance of adaptive lasso and first stage F-test ‘rule of

thumb’ (use all instruments whenever F-statistic is greater than 10).

In our simulations, F-test ‘rule of thumb’ tends to miss the mark of model selection since it

does not reject the H0 that both coefficients are zero when σ = 6, n = 60, 120. Also, it is known

that rejection of the null hypothesis by no means implies there is no weak instrument (Staiger and
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Stock, 1997). On the other hand, adaptive lasso not only shows there are weak instruments in the

model, it specifically tells which ones are (by shrinking them to 0). This simulation setup here is

just used to illustrate the simple problems that may arise with ad hoc F-test with a large noise and

a mixed quality of the instruments. A setup that favors F-test may provide good results for F-test.

6.2 Comparison of Hybrid Estimators with Other Estimators

We present here several ‘hybrid’ estimators. We call it hybrid since in the first stage we use adap-

tive lasso to select instruments. In the second stage we use generalized empirical likelihood (GEL)

estimator, specifically, the continuous updating (CUE), exponential tilting (ET) and empirical

likelihood (EL), as well as TSLS (or GMM in heteroskedasticity case). We therefore name these

hybrid estimators, respectively, H-CUE, H-ET, H-EL and H-TSLS (H-GMM in heteroskedasticity

case). In simulations we also include the Donald and Newey (2001) estimator, Kuersteiner and

Okui (2010) model averaging TSLS estimator, Belloni et al. (2012)’s Post-Lasso estimator and

the traditional limited information maximum likelihood (LIML), Fuller’s estimator and the het-

eroskedasticity robust Fuller (Hausman et al., (2012)) . We compare the results of these structural

equation parameter estimators in terms of finite sample properties. We also adopt the model setup

in Leeb and Pőtscher (2005) in the reduced form equation.

We now briefly explain other estimators which we compare our hybrid estimators. First, we

show Donald and Newey (2001) estimator which chooses the number of instruments to minimize

the leading term of Nagar (1959) type MSE. The 2SLS estimator is

β̂ = (X ′PKX)−1X ′PKY (12)

where X = (x1, . . . , xn)′, Y = (y1, . . . , yn)′, PK = ZK(ZK ′ZK)−1ZK , and K is the index for

the number of instruments which are included in the regression. Now we define the necessary

variables to minimize MSE with respect to K as described in Donald and Newey (2001). Let β̃

be some preliminary estimator of β, e.g., it can be the regular 2SLS estimator. Let ε̃ = Y −Xβ̃,

H̃ = X ′PKX/n, and ũ = (I − PK)X. Let ũλ = ũH̃−1λ̃, where λ̃ = 1. We have the following

variables: σ̂2
ε = ε̃′ε̃/n, σ̂2

λ = ũ′λũλ/n, σ̂λε = ũ′λε̃/n. These preliminary estimators do not depend on

K, they remain as constants as the approximate MSE are calculated. We can use cross validation

or Mallow’s in the calculation. Taking Mallow’s criterion as an example, first, let ûK = (I−PK)X,

ûK
λ = ûKH̃λ̂. So the Mallow’s criteria is R̂m

λ (K) =
ûK

λ
′ûK

λ

n
+ σ̂2

λ(2K/n). Finally, the approximate

MSE of the 2SLS estimator is Ŝλ(K) = σ̂2
λε

K2

n
+ σ̂2

ε

(
R̂m

λ (K)− σ2
λ

K

n

)
.

Second, the model averaging estimator by Kuersteiner and Okui (2010) is considered. Set a

weighting vector W , where W = w1, . . . , wM , and
∑M

m=1 wm = 1 for some M which is the number

of all possible instruments. Let Zm,i be the vector of the first m elements of ZM,i which is an
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M ×1 vector of instruments, let Zm be the matrix (Zm,1, . . . Zm,N ) and let Pm = Zm(Z ′
mZm)−1Z ′

m.

Define P (W ) =
∑M

i=1 wmPm. The model averaging two stage least squares estimator (MA2SLS) is

defined as β̂ = (X ′P (W )X)−1X ′P (W )y.

Third, the Post Lasso estimator by Belloni et al. (2012) which estimates the optimal instruments

set. The Post Lasso is essentially OLS with Lasso selected variables. The Lasso estimator of the

reduced form β is

β̂ = arg min
β∈Rp

Q̂(β) +
λ

n
‖Υ̂β‖1

= arg min
β∈Rp

{
1
n

n∑
i=1

(xi − z′iβ)2 +
λ

n

p∑
j=1

|Υ̂jβj |

}

where Q̂(β) is the sum of squared residuals (least squares) from running xi (endogenous variable)

on zi (the instruments) and ‖Υ̂β‖1 is the sum of absolute values, Υ̂ is penalty loadings defined as

follows:

Initial (or basic option) penalty loadings. Each (j,j) element of the p× p diagonal Υ̂ matrix is

Υ̂j =

√√√√ n∑
i=1

z2
ij(xi − x̄)2

n
j = 1, 2, . . . , p, (13)

where x̄ = n−1
∑n

i=1 xi. Refined penalty loadings are formulated in this way. Each element of the

p× p diagonal Υ̂ matrix is

Υ̂j =

√√√√ n∑
i=1

z2
ij ν̂

2
i

n
j = 1, 2, . . . , p (14)

where ν̂i = xi − z′iβ̂, where β̂ can be either initial LASSO or Post-Lasso (LASSO using the initial

penalty loadings) after a finite number of iterations.

Fourth, the heteroskedasticity robust Fuller’s estimator (Hausman et al. 2012) is given as

follows. Let P = Z(Z ′Z)−1Z ′, Pij denote the ijth element of P, and X̄ = [y, X]. Let α̃ be the

smallest eigenvalues of (X̄ ′X̄)−1(X̄ ′PX̄ −
∑n

i=1 PiiX̄iX̄
′
i). For a constant C let α̂ = [α̃ − (1 −

α)C/T ]/[1− (1− α̃)C/T ]. The heteroskedasticity robust Fuller’s estimator (HFUL) is given by

β̂ = (X ′PX −
n∑

i=1

PiiXiX
′
i − α̂X ′X)−1(X ′Py −

n∑
i=1

PiiXiyi − α̂X ′y) (15)

The asymptotic variance estimator is shown in p. 215 of Hausman et al. (2012), which we use in

the calculation of HFUL variance.
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6.2.1 Simulation Results for Conditional Homoskedasticity

The linear IV regression model with a single endogenous regressor and no included exogenous

variable is:

yi = β0xi + εi (16)

xi = γ1z1i + γ2z2i + νi (17)

where i = 1, 2, · · · , n. The true β0 = 1. Assume the IV matrix Z = [z1, z2] has full rank and

satisfies

Z ′Z/n → Σz =

[
σ2

γ1
σγ1γ2

σγ1γ2 σ2
γ2

]

as n → ∞. We further assume σ2
γ1

= σ2
γ2

= 1 and the correlation between z1 and z2 is ρ1 =

σγ1γ2/(σγ1σγ2) = .7. The errors [εi, νi]′ ( i = 1, 2, · · · , n ) are assumed to be i.i.d. N(0,Σ), where

Σ =

[
σ2

ε σεν

σεν σ2
ν

]
.

Let σε = σν = 2 and ρ2 is correlation between the two error terms ε and ν. The closer ρ2 is to 1,

the stronger the endogeneity of x. We use two values for ρ2 in simulations, .5 and .99. Each model

is replicated 500 times. Now we use two setup of γ’s:

Model 1 : one nonzero (strong) and one exact zero (irrelevant) coefficients γ = (1, 0)′

Model 2: one nonzero (strong) and one local to zero (weak) coefficients γ = (1, t√
n
)′, where t

is a scalar, 2.5, 3.54 (for sample size n= 100, 200 respectively), so we have γ2/σγ2 = .25 as in Leeb

and Pőtscher (2005).

The reduced form equation model settings corresponds to the potential bi-modal density of

LS estimator in Figure 2 of Leeb and Pőtscher (2005). We analyze the critique of Leeb and

Pőtscher (2005) and we show in simulations that the our second stage coefficients are immune to

bi-modality. In the case of irrelevant instruments, we do not expect bi-modality since all parameters

are constants. See Proposition A.9 of Leeb and Pőtscher (2005).

In the following tables we report the median bias of the estimates (Bias), median absolute

deviation (MAD), coverage rate of a nominal 95% confidence interval (95% Coverage Rate), mean

squared error (MSE) and the percentage of z1 being selected but not z2 (Model Selection %). We

also show in the following figures the finite sample densities of the hybrid estimators β̂. We also

did simulations for n = 1000, and the case that γ2/σγ2 = .21 as in Leeb and Pőtscher (2005). The

results of γ2/σγ2 = .21 are very similar to the results of γ2/σγ2 = .25. For n = 1000, the results are

similar to n = 200. Therefore these figures and tables are not shown here for the sake of space.

First we consider the bias. From Table 2, we see that full model TSLS is worse compared to all

hybrid methods, Post-Lasso of Belloni et al. (2012) and full model LIML. For Model 1, the median
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bias of the full model is 0.032, while the bias of hybrid TSLS, CUE, ET, EL are 0.019, 0.019, 0.020

and 0.018 respectively. Therefore we do not recommend using the full model TSLS. LIML has the

best bias term (which is 0.012) given our linear homoskedastic model. If we use TSLS with only

the strong instrument (SO), the bias is 0.015. Post-Lasso has bias 0.024 which is worse than the

hybrid estimators. Donald and Newey (2001) and Kuersteiner and Okui (2010) model averaging

TSLS estimators (with bias 0.035 and 0.036 respectively) have higher bias than the full model.

Fuller’s estimator has bias 0.031 which is very close to the full model TSLS. Model 2 in Table 1 has

also very similar results. When we analyze Tables 2-4, we see that LIML has the best bias followed

by H-CUE estimator.

Second we consider MSE. Overall, hybrid CUE-ET estimators have the best MSE in Tables 2-5

followed by post Lasso and Fuller estimators. In Table 2, Model 1, the MSE for hybrid CUE-ET

are 0.040, 0.040 respectively. Full model TSLS has 0.051. LIML’s MSE is 0.057 which is worse than

all except from the weak only (WO) TSLS case (MSE is 0.079). TSLS with strong instrument only

(SO) has MSE of 0.055. Donald and Newey (2001), Kuersteiner and Okui (2010) model averaging

TSLS estimators have MSE of 0.051 and 0.050 respectively. Post-Lasso has MSE of 0.043 whereas

Fuller has MSE of 0.044. In Model 2, hybrid GEL estimators are the best (0.028, 0.028 and 0.029

for H-CUE, H-ET, H-EL respectively). Kuersteiner and Okui (2010) model averaging TSLS and

Fuller’s estimator are (closely) second best (0.030) and post Lasso has MSE of 0.031. Full model

TSLS, hybrid TSLS and Donald and Newey (2001) estimator and Post-Lasso are closely behind

(0.031). MSE of TSLS with strong IV only (SO) and LIML are both 0.034. In Table 3, we see the

same trends as in Table 1. But in Tables 4-5, all models are pretty close to each other in MSE

when n = 200.

When we look at the coverage rates for a 95% confidence interval, we see that all methods are

slightly under the nominal rate generally. In terms of model selection rates, Hybrid estimators

perform very well, Donald and Newey (2001) method does not do that well, and post Lasso is

in between the two cases. To give an example in Tables 2-3, H-CUE has correct model selection

77-92% of time, whereas Donald and Newey (2001) method has 22-51% correct model rate, and

post Lasso of Belloni et al. (2012) has a rate of 53-82%. From the following Figures 1-8, we see

that the bi-modality of the reduced form equation such as the ones shown in Fig. 2 of Leeb and

Pőtscher (2005) in the reduced form equations does not affect the empirical distribution of hybrid

GEL estimators of the second stage in overidentified case. The figures for heteroskedastic case

are not shown since the main idea is to show that structural parameter estimates in overidentified

framework are not affected by bi-modality of reduced form coefficients.

To summarize, in the homoskedastic case, LIML has the best bias, but hybrid CUE-ET have

the best MSE terms, also we see that hybrid estimators do a very good job on selecting the model.
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Figure 1: Finite sample densities of hybrid estimators: n = 100, γ2 = 0, ρ2 = .5, σε = 2
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Figure 2: Finite sample densities of hybrid estimators: n = 100, γ2 = 2.5/
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n, ρ2 = .5, σε = 2
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Figure 3: Finite sample densities of hybrid estimators: n = 100, γ2 = 0, ρ2 = .99, σε = 2
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Figure 5: Finite sample densities of hybrid estimators: n = 200, γ2 = 0, ρ2 = .5, σε = 2
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Figure 6: Finite sample densities of hybrid estimators: n = 200, γ2 = 3.54/
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n, ρ2 = .5, σε = 2
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Figure 7: Finite sample densities of hybrid estimators: n = 200, γ2 = 0, ρ2 = .99, σε = 2
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6.2.2 Simulation Results for Conditional Heteroskedasticity

The IV regression model we use here is similar to the one used in conditional homoskedasticity

simulations, but with modification of the error terms, replacing εi by εi = ‖Zi‖εi (‖‖ is the Euclidean

norm) and νi by νi = ‖Zi‖νi to have the desired heteroskedasticity.

We now describe the simulation results as shown in Tables 6-9. In the tables we present finite

sample results for the new hybrid estimators, respectively, hybrid GMM (H-GMM), hybrid CUE

(H-CUE), hybrid ET (H-ET) and hybrid EL (H-EL) estimators. We also include Donald and Newey

(2001) estimator, Kuersteiner and Okui (2010) model averaging estimator, Post Lasso by Belloni et

al. (2012), heteroskedasticity robust Fuller’s estimator by Hausman et al. (2012), the conventional

full model (use all instruments) GMM, and full model CUE estimators. We report median bias,

median absolute deviation, nominal 95% coverage rate, MSE and the percentage of only the strong

IV being selected by the model selection methods.

First, we describe the results of MSE. In Table 6, Post Lasso is the best in terms of MSE. The

hybrid estimators are the second best in MSE category. In Model 1 of Table 6, Post Lasso has MSE

of 0.164. The hybrid GMM, CUE, ET, EL have MSE of 0.196, 0.189, 0.187 and 0.195 respectively.

Heteroskedasticity robust Fuller’s estimator has 0.288. Donald and Newey (2001) estimator has

0.359. Full model GMM and CUE have MSE of 0.513 and 0.517 respectively. Since Kuersteiner and

Okui (2010) estimator is designed for homoskedastic data, its MSE is the highest, which is 0.600.

Model 2 has similar results. In Table 7, with small sample size and higher endogeneity, we find that

Post Lasso has the best MSE. In Model 1, Donald and Newey (2001) estimator has the second best

MSE with 0.135. The hybrid estimators (H-GMM, H-CUE, H-ET, H-EL) have 0.188,0.187,0.186

and 0.186 respectively. In Model 2, Post Lasso has the best MSE. Hybrid estimators, H-GMM,

H-CUE, H-ET, H-EL, are the second best in terms of MSE, which take the values of 0.157, 0.156,

0.154 and 0.157 respectively. Donald and Newey (2001) estimator is the third in MSE category

with 0.165 in Table 7, Model 2. Tables 8-9 show results when n = 200. In terms of median bias,

and mean absolute deviation, hybrid estimators perform well compared with post Lasso. Tables

6-9 show that post Lasso has higher bias compared with hybrid estimators. In terms of coverage

rates, all methods undercover. Hybrid estimators also have very good model selection percentage

in reduced form equation compared with post Lasso and Donald-Newey (2001) estimators as can

be seen in Tables 6-9. As expected, in the case of weak instruments, the correct model selection

percentages of all methods suffer.

7 Conclusion

This paper proposes hybrid estimators. The first stage is adaptive lasso estimation/model selection.

This method penalizes irrelevant instruments and do not use them in the second stage. In the second
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stage we try two step GMM, as well as Continuous Updating (CUE), Exponential Tilting, Empirical

Likelihood estimators. We show that hybrid estimators have good finite sample properties compared

with existing methods. We think that a useful extension is to find a way of jointly analyzing reduced

and structural form equations in adaptive lasso framework. But this poses identification issues. To

overcome them will be a major step.
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APPENDIX

Proof of Theorem 1.

Consistency is analyzed first, then in part (i) we consider asymptotic normality, then in part

(ii) selection consistency is proved. Denote the loss function as:

Ln(γv) = [Xv − Z̃γv]′[Xv − Z̃γv] + λn

q∑
j=1

p∑
k=1

ŵjk|γjk|. (18)
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Using (2) see that sum of squared errors part in that equation can be written as

1
n

(Xv − Z̃γv)′(Xv − Z̃γv) =
1
n

[νv − Z̃(γv − γ0
v)]′[νv − Z̃(γv − γ0

v)]

=
ν ′vνv

n
− 2

ν ′vZ̃(γv − γ0
v)

n

+ (γv − γ0
v)′
(

Z̃ ′Z̃

n

)
(γv − γ0

v).

First, by Assumption 1

ν ′vνv

n
=
∑n

i=1

∑p
k=1 ν2

ik

n

p→ σ2
ν > 0.

Then by Assumption 2
Z̃ ′νv

n

p→ 0.

Next via Assumption 3
Z̃ ′Z̃

n

p→ C < ∞.

Combining those in the sum of squared errors part of our objective function

1
n

(Xv − Z̃γv)′(Xv − Z̃γv)
p→ σ2

ν + (γv − γ0
v)′C(γv − γ0

v). (19)

Next we consider the penalty term in our objective function. First since γ̃jk = Op(n−1/2),

ŵjk = Op(nτ/2).

Then by Assumption 4
λn

n
ŵjk

p→ 0,

So
λn

n

q∑
j=1

p∑
k=1

ŵjk|γjk|
p→ 0. (20)

So since Ln(γv) is convex by (19)(20)

Ln(γv)
p→ σ2

ν + (γv − γ0
v)′C(γv − γ0

v) = L(γv). (21)

γ̂v = Op(1), (22)

by applying the standard results in Anderson and Gill (1982), Pollard (1991) as in the proof of

Theorem 1 in Knight and Fu (2000). So given the last two results we have the consistency of our
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estimator, using

argminLn(γv)
p→ argminL(γv).

See that unique minimum is at γ0
v for the limit term in (22) given that C is full rank. So the

consistency is proved and

γ̂v
p→ γ0

v .

(i). We start the asymptotic normality proof now. Set û =
√

n(γ̂v − γ0
v). Specifically we can

write γ̂v as

γ̂v =


γ0

1 + û1√
n

...

γ0
q + ûq√

n

 . (23)

and define the following p× 1 vector for each j = 1, · · · , q

γ0
j +

ûj√
n

=


γ0

j1 + ûj1√
n

...

γ0
jp + ûjp√

n

 .

Note that

û = argminΨn(u),

where

Ψn(u) = [Xv − Z̃(γ0
v +

u√
n

)]′[Xv − Z̃(γ0
v +

u√
n

)] + λn

q∑
j=1

p∑
k=1

ŵjk|γ0
jk +

ujk√
n
|,

where u : pq × 1 vector, and u is stacked in the same way as γv:

u =


u1

...

uq

 . (24)

each uj , j = 1, 2 · · · q, is p× 1 vector. Now we can consider the following function

Vn(u) = Ψn(u)−Ψn(0)

= u′

(
Z̃ ′Z̃

n

)
u− 2u′

(
Z̃ ′νv√

n

)

+
λn√

n

q∑
j=1

p∑
k=1

ŵjk

√
n(|γ0

jk + ujk/
√

n| − |γ0
jk|). (25)
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See that û = argminVn(u). Then by Assumption 3

Z̃ ′Z̃

n

p→ C < ∞.

Next by Assumption 5 (via Central Limit Theorem)

Z̃ ′νv

n1/2

d→ N(0,Ω) ≡ W.

The limit for the penalty in (25) will be discussed next. Depending on γ0
jk there are two possibilities.

First if γ0
jk 6= 0 (j = 1, 2, · · · q0, k = 1, 2, · · · p) we have

ŵjk
p→ 1
|γ0

jk|τ
.

So in that case
√

n(|γ0
jk + ujk/n1/2| − |γ0

jk|) → ujksgn(γ0
jk),

and with Assumption 4 (λn/n1/2 → 0)

λn

n1/2
ŵjk[n1/2(|γ0

jk + ujk/n1/2| − |γ0
jk|)]

p→ 0.

The second case is when γ0
jk = 0, we have

√
n(|γ0

jk + ujk/n1/2| − |γ0
jk|) = |ujk|,

and with ŵjk definition and in the case of zero parameters (γ0
jk = 0) since the first stage estimator

n1/2γ̃jk = Op(1),
λn

n1/2
ŵjk =

λn

n1/2
nτ/2(n1/2γ̃jk)−τ p→∞. (26)

by Assumption 4. So unless ujk = 0

λn

n1/2
ŵjkn

1/2(|γ0
jk + ujk/n1/2| − |γ0

jk|)
p→∞.

Clearly given the above results, and defining uA as the first pq0 elements of u vector which is of

dimension pq, and by C11 being the pq0× pq0 upper left block in C matrix, and WA being the first

pq0 elements of pq vector W , (These designations are done since A = {1, · · · q0} without losing any

generality)

Vn(u) d→ V (u) = u′AC11uA − 2u′AWA if ujk = 0, j = q0 + 1, · · · , q, k = 1, · · · p

= ∞ otherwise.
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Since Vn is convex and the unique minimum of V is C−1
11 WA, then by epiconvergence result of

Knight and Fu (2000) we get

ûA
d→ N(0, C−1

11 Ω11C
−1
11 ),

since WA = N(0,Ω11) where Ω11 is the full rank, pq0 × pq0 upper left block in Ω (pq × pq matrix).

Also

ûAc
d→ 0,

where Ac = {q0 + 1, · · · , q} by û definition. So the limit theory is done.

(ii). Now we prove selection consistency. First ∀j ∈ A, the consistency shows that

P (j ∈ An) → 1.

We have to show also, ∀j′ /∈ A,

P (j′ ∈ An) → 0.

So for all j′ /∈ A, take an event j′ ∈ An. By Karush-Kuhn-Tucker optimality condition

2Z̃ ′
j′(Xv − Z̃γ̂v) = λn(ŵj′1, · · · , ŵj′p)′.

Also see that by Assumption 4, for k = 1, · · · p, as in (26)

λnŵj′k

n1/2
=

λn

n1/2
nτ/2 1

|n1/2γ̃j′k|τ
p→∞.

Rewrite left term of the first order condition above as

2Z̃ ′
j′ [νv − Z̃(γ̂v − γ0

v)]

n1/2
=

2Z̃ ′
j′νv

n1/2
−

2Z̃j′Z̃

n
n1/2(γ̂v − γ0

v). (27)

By the arguments in the proof of the asymptotic normality, Assumptions 3,5, Theorem 1(i), (27)

converges to a normal distribution, so

P (j′ ∈ An) ≤ P (2Z̃ ′
j′(Xv − Z̃γ̂v) = λn(ŵj′1, · · · , ŵj′p)′) → 0.

Q.E.D.

Proof of Lemma 1. The proof consists of two parts. First we prove a result regarding refined

loadings, then the asymptotic bias result is presented.

Proof of Refined Loadings. First, we need to prove

π̂j
p→ π0

j , (28)
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for j = 1, · · · , p, where π0
j = limn→∞

1
n

∑n
i=1 Ez2

ijv
2
i for the refined loadings. We show the proof

for refined loadings. The proof for initial loadings are very similar, and hence it is skipped. Define,

for each j = 1, 2 · · · , p,

π̂2
j =

1
n

n∑
i=1

z2
ij v̂

2
i ,

and v̂i = di − z′iγ̂InitialLasso. Next denote

π̃2
j =

1
n

n∑
i=1

z2
ijv

2
i ,

We want to prove specifically

max
1≤j≤p

|π̂2
j − π̃2

j |
p→ 0, (29)

max
1≤j≤p

|π̃2
j − (π0

j )
2| p→ 0, (30)

Step 3 in p.37 (via Assumption B.1) of the proof of Theorem 1 of Belloni et al (2012) provides

the proof of (30). Then proof of Lemma 11 of online appendix in Belloni et al. (2012) shows (29)

via Assumption B.1.

Q.E.D.

Proof of Asymptotic Bias of Lasso. Now, we assume consistency of Lasso type estimator

that is already proved in Theorem 1 of Belloni et al. (2012). Next, we provide the important step in

proving the asymptotic bias of Lasso type estimator of Belloni et al. (2012). Denote the objective

function of Belloni et al. (2012) as

Qn(u) =
n∑

i=1

(vi − u′zi/n1/2)2 + λ

p∑
j=1

|π̂j(γj0 + uj/n1/2)|,

where û minimizes Qn(u). Now see that û also minimizes the following

Vn(u) = Qn(u)−Qn(0),

where

Vn(u) =
n∑

i=1

{[vi − u′zi/n1/2]2 − v2
i }

+ λ[
p∑

j=1

|π̂j(γj0 + uj/n1/2)| − |π̂jγj0|].
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Then the first part of proof follows much from Theorem 2 of Knight and Fu (2000) and

n∑
i=1

{[vi − u′zi/n1/2]2 − v2
i }

d→ −2u′W + u′Σu, (31)

where W ≡ N(0,ΣZv), and n−1
∑n

i=1 ziz
′
i

p→ Σ. This is true through Law of Large Numbers and

the Central Limit Theorem given Assumption B.1, and Lemma 3, Condition 1 in Belloni et al.

(2012). Next if the true γ are zeroes then the penalty term is:

λ[
p∑

j=1

|π̂j(γj0 + uj/n1/2)| − |π̂jγj0|]
p→ λ0

p∑
j=1

|π0
j uj |, (32)

by (28), and the Assumption of λ/n1/2 → λ0 ≥ 0, and γj0 is the jth element of γ0 vector, j =

1, · · · , p. If the γ0 coefficients are nonzero then the limit of the penalty is

λ[
p∑

j=1

|π̂0(γj0 + uj/n1/2)| − |π̂jγ0j |]
p→ λ0

p∑
j=1

π0
j ujsgn(γj0π

0
j ), (33)

where we use again the proof of (28) and consistency of γ̂Lasso in Assumption B.2. Now combine

(31)(32)(33) to have

Vn(u) d→ V (u) = −2u′W + u′Σu + λ0

p∑
j=1

[π0
j ujsgn(γj0π

0
j )1{γj0 6=0} + |ujπ

0
j |1{γj0=0}]. (34)

Q.E.D.

Proof of Lemma 2. Note that γ̂Lj for all j = 1, · · · p represents the estimator in (5). The

proof is similar to the proof of the Proposition 1 of Zou (2006). It consists of two parts. The first

part is a repeat of Zou (2006) with no change. In the second part of the proof, there is a change

due to usage of different penalty factor in Belloni et.al (2010) Lasso estimator.

The first part shows us the main idea behind the proof, hence it is repeated from Zou (2006).

We set

An = {j : γ̂Lj 6= 0},

A = {j : γLj0 6= 0}.

For ease of use set also γ0 = (γA, 0Ac), where γA are coefficients that corresponds to the set of

nonzero instruments (relevant ones), and 0Ac represents the zero coefficients.

Let u∗ = argminV (u) in (34), then

P (An = A) ≤ P (
√

nγ̂Lj = 0,∀j /∈ A).
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By Lemma 1
√

nγ̂Ac
d→ u∗Ac = 0, where γ̂Ac represents the estimators that correspond to ”zero

population coefficients”, and Ac = {j : γj = 0}. Note the typo in the proof of Proposition 1 in Zou

(2006) where A is used instead of Ac in the previous argument.

But by Portmentaeu Theorem 1.3.4.iii in van der Vaart and Wellner (1996)

lim supP (
√

nγ̂j = 0,∀j /∈ A) ≤ P (u∗j = 0,∀j /∈ A).

We need to show

c = P (u∗j = 0,∀j /∈ A) < 1. (35)

The second part of the proof has some modification to Zou (2006) since Lasso of Belloni et al.

(2012) is different, in penalty terms, compared to regular Lasso. We only analyze the case of

λ0 > 0, the case of λ0 = 0 is trivial since c = 0 in (35) (the same in Zou (2006)) hence it is omitted.

By Kuhn-Tucker optimality condition, and Σ being defined in Lemma 1,

−2Wj + 2(Σu∗)j + λ0π
0
j sgn(π0

j γj0) = 0,∀j ∈ A.

| − 2Wj + 2(Σu∗)j | ≤ λ0π
0
j ,∀j /∈ A.

We introduce notation that will be useful for the proof. See that

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
,

where Σ11 is a square matrix, corresponds to limit of second moments of relevant instruments, it

is also invertible and positive definite, Σ22 corresponds to limit of second moments of irrelevant

instruments, and Σ12 is the limit of sample cross product of the relevant with irrelevant instruments,

Σ21 = Σ′
12. WA are Wj ’s where j ∈ A, WAc represents Wj ’s where j ∈ Ac. Also observe that

u∗Ac = 0, u∗A represents the optimal u with respect to nonzero coefficients. Similarly π0
A is the

vector of π0
j where j ∈ A, and π0

Ac is the vector of πj , where j ∈ Ac.

If u∗j = 0, for all j /∈ A, then the optimality condition can be written as componentwise

−2WA + 2Σ11u
∗
A + λ0π

0
Asgn(π0

AγA) = 0. (36)

| − 2WAc + 2Σ21u
∗
A| ≤ λ0π

0
Ac . (37)

Note that this is the difference with Zou (2006) proof, we have π0 terms in (36)(37). Next combine

(36)(37) componentwise

| − 2WAc + Σ21Σ−1
11 (2WA − λ0π

0
Asgn(π0

AγA))| ≤ λ0π
0
Ac .
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This means that

c ≤ P [| − 2WAc + Σ21Σ−1
11 (2WA − λ0π

0
Asgn(π0

AγA))| ≤ λ0π
0
Ac ] < 1.

Note that in the above equation if the truth is zero coefficient, the weight in adaptive lasso takes

positive infinite value unlike π0
Ac of heteroskedastic lasso and makes the right hand side probability

equal to one, in the case of adaptive lasso. So just from this equation, also it is possible to compare

the adaptive lasso and heteroskedasticity consistent lasso of Belloni et al. (2012). Q.E.D.

Proof of Theorem 2.

The first part of the proof (equations (38)-(40)) follows from the proof of Theorem 3 in Zou

(2006). Zou (2006) specifically uses iid standard normal random variables in the proof. Since we

allow for Gaussian and heteroskedastic data, our proof is different from his. First, we add and

subtract from the risk formula

E[
n∑

i=1

(µ̂i − µi)2] = E[
n∑

i=1

(µ̂i − xi) + (xi − µi)]2

= E[
n∑

i=1

(µ̂i − xi)2] + E[
n∑

i=1

(xi − µi)2]

+ 2E[
n∑

i=1

µ̂i(xi − µi)]− 2E[
n∑

i=1

xi(xi − µi)]. (38)

Note that

E[
n∑

i=1

(xi − µi)2] = E[
n∑

i=1

v2
i ] =

n∑
i=1

σ2
i ,

E

n∑
i=1

xi(xi − µi) = E[
n∑

i=1

(µi + vi)vi] = E[
n∑

i=1

v2
i ] =

n∑
i=1

σ2
i ,

since µi is constant and vi has zero mean. Substituting these in (38) we obtain

E[
n∑

i=1

(µ̂i − µi)2] = E[
n∑

i=1

(µ̂i − xi)2]−
n∑

i=1

σ2
i + 2E

n∑
i=1

µ̂i(xi − µi). (39)

Now we consider the first term on the right hand side of (39). Using (10) for each i = 1, 2 · · · , n

we have

(µ̂i − xi)2 =
x2

i if |xi| ≤ λ
1/1+τ
i

λ2
i

|xi|2τ if |xi| > λ
1/1+τ
i

. (40)

We will benefit from (40) in evaluating the first term on the right hand side of (39). Next, we

consider the third term on the right hand side of (39). First by Stein’s Lemma (Lemma 5.1 in de
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la Peña et al. (2009))

E[
n∑

i=1

µ̂i(xi − µi)] ≤ E[
n∑

i=1

µ̂i(
xi − µi

σi
)]max

i
σi ≤ E

[
n∑

i=1

∂µ̂i

∂xi

]
d, (41)

where maxi σi ≤ d and 0 < d < ∞, σi > 0. Since by (10), for each i = 1, 2 · · · , n

∂µ̂i

∂xi
=

0 if |xi| ≤ λ
1/1+τ
i

1 + λi
τ |xi|1+τ if |xi| > λ

1/1+τ
i

. (42)

Combine (40)(41)(42) in (39) we can rewrite

E

n∑
i=1

(µ̂i − µi)2 ≤ E

n∑
i=1

(x2
i 1{|xi|≤λ

1/(1+τ)
i }) + E

n∑
i=1

(
λ2

i

|xi|2τ
1{|xi|>λ

1/(1+τ)
i }

)
−

n∑
i=1

σ2
i

+ E

[
n∑

i=1

(
2 +

2λi

τ |xi|1+τ

)
1{|xi|>λ

1/(1+τ)
i }

]
d

= E

[
n∑

i=1

x2
i 1{|xi|≤λ

1/(1+τ)
i }

]
+ E

[
n∑

i=1

(
λ2

i

|xi|2τ
+ 2d +

2λid

τ |xi|1+τ

)
1{|xi|>λ

1/(1+τ)
i }

]

−
n∑

i=1

σ2
i . (43)

By using |xi| ≤ λ
1/1+τ
i for the first right hand side term in (43), then using |xi| > λ

1/1+τ
i to get

1
|xi|2τ ≤ 1

|λi|2τ/1+τ in the second term on the right hand side of (43) and λi
|xi|1+τ ≤ 1

E

n∑
i=1

[µ̂i − µi]2 ≤
n∑

i=1

[λ2/1+τ
i P (|xi| ≤ λ

1/1+τ
i )]

+
n∑

i=1

[(2d + 2d/τ + λ
2/1+τ
i )P (|xi| > λ

1/1+τ
i )]−

n∑
i=1

σ2
i

≤
n∑

i=1

λ
2/1+τ
i + 2d + 2d/τ. (44)

Now we will simplify this expression for further use. We can rewrite, using λi = (2σ2
i logn)(1+τ)/2

λ
2/1+τ
i + 2d + 2d/τ = σ2

i (2logn +
2d

σ2
i

+
2d

τ

1
σ2

i

) ≤ σ2
i [2logn +

2d

mini σ2
i

+
2d

τ

1
mini σ2

i

]

≤ σ2
i [2logn + 2c +

2
τ
c],
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where c > d
miniσ2

i
. So the bound in (44) can be written as

E

n∑
i=1

[(µ̂i − µi)2] ≤ [2logn + 2c +
2
τ
c]

n∑
i=1

σ2
i . (45)

In the next part of the proof we will get a new bound for the estimated risk, and then we

compare with the one that we found in (45). Use (43)

E[
n∑

i=1

(µ̂i − µi)2] ≤ E

n∑
i=1

x2
i + E[

n∑
i=1

(
λ2

i

|xi|2τ
+ 2d +

2λid

τ |xi|1+τ
− x2

i

)
1{|xi|>λ

1/1+τ
i }]−

n∑
i=1

σ2
i

= E[
n∑

i=1

(
λ2

i

|xi|2τ
+ 2d +

2λid

τ |xi|1+τ
− x2

i

)
1{|xi|>λ

1/1+τ
i }] +

n∑
i=1

µ2
i . (46)

When |xi| > λ
1/(1+τ)
i ,

λ2
i

|xi|2τ
− x2

i ≤
λ2

i

|xi|2τ
− λ

2/1+τ
i . (47)

and
1

|xi|2τ
≤ 1

λ
2τ/(1+τ)
i

. (48)

so

λ2
i

|xi|2τ
− λ

2/1+τ
i ≤ λ2

i

λ
2τ/(1+τ)
i

− λ
2/(2+τ)
i

= λ
2/(1+τ)
i − λ

2/(1+τ)
i = 0. (49)

By (47)-(49), if |xi| > λ
1/(1+τ)
i

λ2
i

|xi|2τ
− x2

i ≤ 0. (50)

So use (50) in (46) to have

E

n∑
i=1

(µ̂i − µi)2 ≤ E

[
n∑

i=1

(
2λid

τ |xi|1+τ
+ 2d

)
1{|xi|>λ

1/(1+τ)
i }

]
+

n∑
i=1

µ2
i . (51)

When |xi| > λ
1/(1+τ)
i we can rewrite (51) as

E[
n∑

i=1

(µ̂i − µi)2] ≤ (
2d

τ
+ 2d)

n∑
i=1

P (|xi| > λ
1/(1+τ)
i ) +

n∑
i=1

µ2
i . (52)

Now we try to evaluate the P (|xi| > λ
1/(1+τ)
i ). Set ti = λ

1/1+τ
i , and proceed as in p.1427-1428 of
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Zou (2006) to have

P (|xi| > ti) ≤ 2√
2πσ2

i ti

e−t2i /2σ2
i + 2µ2

i .

≤ 1

n
√

πσ2
i

(logn)−1/2 + 2µ2
i , (53)

where we use ti definition and λi = (2σ2
i logn)(1+τ)/2 in the last step. See also the equations after

(A.12) in Zou (2006). Use (53) in (52)

E

n∑
i=1

(µ̂i − µi)2 ≤ (
4d

τ
+ 4d) max

i
(

1

2
√

πσ2
i

(logn)−1/2) + (
4d

τ
+ 4d + 1)

n∑
i=1

µ2
i

≤ (
4d

τ
+ 4d)

1
2
√

π

c1/2

d1/2
(logn)−1/2 + (

4d

τ
+ 4d + 1)

n∑
i=1

µ2
i , (54)

by c, d definitions. Add 2logn
∑n

i=1 µ2
i and (2logn + 1)(c1/2/d1/2) 1

2
√

π
(logn)−1/2 to (54) so that it

is compatible with the bound in (45)

E

n∑
i=1

(µ̂i − µi)2 ≤ (2logn +
4d

τ
+ 4d + 1)

1
2
√

π

c1/2

d1/2
(logn)−1/2 + (2logn +

4d

τ
+ 4d + 1)

n∑
i=1

µ2
i . (55)

Then set b = max(2c, 4d + 1). Use b definition to rewrite (55) as

E

n∑
i=1

(µ̂i − µi)2 ≤ (2logn +
b

τ
+ b)

1
2
√

π

c1/2

d1/2
(logn)−1/2 + (2logn +

b

τ
+ b)

n∑
i=1

µ2
i . (56)

Next add (2logn + b + b
τ )c1/2/d1/2 1

2
√

π
(logn)−1/2 to (45) and use b definition as well to have

E

n∑
i=1

(µ̂i − µi)2 ≤ (2logn +
b

τ
+ b)

1
2
√

π

c1/2

d1/2
(logn)−1/2 + (2logn +

b

τ
+ b)

n∑
i=1

σ2
i . (57)

The result can be deducted from (56)(57).

Q.E.D.
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