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Abstract

This paper presents a general formulation for the univariate nonlinear autore-
gressive model discussed by Glasbey [Journal of the Royal Statistical Society: Series
C, 50(2001), 143—154] in the first order case, and provides a more thorough treat-
ment of its theoretical properties and practical usefulness. The model belongs to the
family of mixture autoregressive models but it differs from its previous alternatives
in several advantageous ways. A major theoretical advantage is that, by the defi-
nition of the model, conditions for stationarity and ergodicity are always met and
these properties are much more straightforward to establish than is common in non-
linear autoregressive models. Moreover, for a pth order model an explicit expression
of the (p+1)—dimensional stationary distribution is known and given by a mixture
of Gaussian distributions with constant mixing weights. Lower dimensional sta-
tionary distributions have a similar form whereas the conditional distribution given
the past observations is a Gaussian mixture with time varying mixing weights that
depend on p lagged values of the series in a natural way. Due to the known sta-
tionary distribution exact maximum likelihood estimation is feasible, and one can
assess the applicability of the model in advance by using a nonparametric estimate
of the density function. An empirical example with interest rate series illustrates
the practical usefulness of the model.
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1 Introduction

During the past two or three decades various nonlinear autoregressive (AR) models have

been proposed to model time series data. This paper is confined to univariate parametric

models although multivariate models and nonparametric models have also attracted in-

terest. Tong (1990) and Granger and Teräsvirta (1993) provide comprehensive accounts

of the early stages of threshold autoregressive (TAR) models and smooth transition au-

toregressive (STAR) models which have become perhaps the most popular nonlinear AR

models. An up-to-date discussion of TAR and STAR models, as well as other nonlinear

time series models, can be found in Teräsvirta, Tjøstheim, and Granger (2010). TAR

and STAR models are distinctively models for the conditional expectation of a time series

given its past history although they may also include a time varying conditional vari-

ance. The conditional expectation is specified as a convex combination of conditional

expectations of two or more linear AR models and similarly for the conditional variance

if it is assumed time varying. The weights of these convex combinations (typically) de-

pend on a past value of the time series so that different models are obtained by different

specifications of the weights.

The specification of TAR and STAR models is focused on the conditional expectation

(and possibly conditional variance) and not so much on the conditional distribution which

in parameter estimation is assumed to be Gaussian. In so-called mixture AR models the

focus is more on the specification of the whole conditional distribution. In these models

the conditional distribution, not only the conditional expectation (and possibly condi-

tional variance) is specified as a convex combination of (typically) Gaussian conditional

distributions of linear AR models. Thus, the conditional distribution is a mixture of

Gaussian distributions and, similarly to TAR and STAR models, different models are ob-

tained by different specifications of the mixing weights, often assumed to be functions of

past values of the series. Models of this kind were introduced by Le, Martin, and Raftery

(1996) and further developed by Wong and Li (2000, 2001a,b). Further references include

Glasbey (2001), Lanne and Saikkonen (2003), Gourieroux and Robert (2006), Dueker,

Sola, and Spagnolo (2007), and Bec, Rahbek, and Shephard (2008) (for reasons to be

discussed in Section 2.3 we treat the model of Dueker, Sola, and Spagnolo (2007) as a

mixture model although the authors call it a STAR model). Markov switching AR models

(see, e.g., Hamilton (1994; Ch. 22)) could also be included in mixture AR models but,

as their structure is rather different from the mixture AR models we are interested in, we

shall not discuss them any further in this paper.
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A property that makes the stationary linear Gaussian AR model different from most,

if not all, of its nonlinear AR alternatives is that the probability structure of the under-

lying stochastic process is fully known. In particular, the joint distribution of any finite

realization is Gaussian with mean and covariance matrix being simple functions of the

parameters of the conditional distribution used to parameterize the model. In nonlin-

ear AR models the situation is typically very different. The conditional distribution is

known by construction but what is usually known beyond that is only the existence of a

stationary distribution and finiteness of some of its moments. No explicit expression for

the stationary distribution or its density function is known and conditions under which

the stationary distribution exists may not be fully known. A notable exception is the

mixture AR model discussed by Glasbey (2001, Section 3). In his paper Glasbey (2001)

explicitly considers the model only in the first order case and applies it to solar radiation

data. In this paper, we extend this model to the general pth order case and provide a

more detailed discussion of its properties.

In the considered mixture AR model the mixing weights are defined in a specific

way which turns out to have very convenient implications from both theoretical and

practical point of view. A theoretical consequence is that stationarity of the underlying

stochastic process is a simple consequence of the definition of the model and ergodicity

can also be established straightforwardly without imposing any additional restrictions

on the parameter space of the model. Moreover, in the pth order case, the (p + 1)—

dimensional stationary distribution is known to be a mixture of Gaussian distributions

with constant mixing weights and known structure for the mean and covariance matrix of

the component distributions. Consequently, all lower dimensional stationary distributions

are of the same type. From the specification of the mixing weights it also follows that

the conditional distribution is a Gaussian mixture with time varying mixing weights that

depend on p lagged values of the series in a way that has a natural interpretation. Thus,

similarly to the linear Gaussian AR process, and contrary to other nonlinear AR models,

the structure of stationary marginal distributions of order p+ 1 or smaller is fully known.

Stationary marginal distributions of order higher than p + 1 are not Gaussian mixtures

and for them no explicit expressions are available. This need not be a drawback, however,

because a process with all finite dimensional distributions being Gaussian mixtures (with

constant mixing weights) cannot be ergodic, as we shall demonstrate in the paper. Despite

this fact, the formulation of the model is based on the assumption of Gaussianity, and

therefore we call the model a Gaussian Mixture AR (GMAR) model.

A practical convenience of having an explicit expression for the stationary marginal
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density is that one can use a nonparametric density estimate to examine the suitability of

the GMAR model in advance and, after fitting a GMAR model to data, assess the fit by

comparing the density implied by the model with the nonparametric estimate. Because the

p—dimensional stationary distribution of the process is known the exact likelihood function

can be constructed and used to obtain exact maximum likelihood (ML) estimates. An

advantage, which also stems from the formulation of the model, is the specific form of

the time varying mixing weights which appears very flexible. As demonstrated by our

empirical example, we are able to capture features in the data that appear diffi cult to

capture with previous mixture AR models or with usual TAR and STAR models where

the transition functions are counterparts of the mixing weights.

The rest of the paper is organized as follows. After discussing general Gaussian mixture

AR models Section 2 presents the GMAR model along with a discussion of its properties.

Section 3 describes how the parameters of the GMAR model can be estimated by the

method of maximum likelihood. Section 4 presents an empirical example with interest

rated data, and Section 5 concludes. An appendix provides some technical derivations.

2 Models

2.1 Mixture autoregressive models

Let yt (t = 1, 2, . . .) be the real-valued time series of interest, and let Ft−1 denote the
σ—algebra generated by {yt−j, j > 0}. We consider an AR mixture model in which the
conditional density function of yt given its past, f(· | Ft−1), is of the form

f(yt | Ft−1) =
M∑
m=1

αm,t
1

σm
φ

(
yt − µm,t
σm

)
. (1)

Here the (positive) mixing weights αm,t are Ft−1—measurable and satisfy
∑M

m=1 αm,t = 1

(for all t). Furthermore, φ(·) denotes the density function of a standard normal random
variable, µm,t is defined by

µm,t = ϕm,0 +

p∑
i=1

ϕm,iyt−i, m = 1, . . . ,M, (2)

and ϑm = (ϕm,0,ϕm, σ
2
m) with ϕm = (ϕm,1, . . . , ϕm,p) and σ

2
m > 0 (m = 1, . . . ,M) contain

the unknown parameters introduced in the above equations. (By replacing p in (2) with

pm, the autoregressive orders in the component models could be allowed to vary; on the
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other hand, this can also be achieved by restricting some of the ϕm,i—coeffi cients in (2) to

be zero.) As equation (2) indicates, the definition of the model also requires a specification

of the initial values y−p+1, . . . , y0. Different mixture AR models are obtained by different

specifications of the mixing weights. Section 2.3 provides a more detailed discussion of

the various specifications proposed in the literature.

For further intuition we express the model (1)—(2) in a different format. Let Pt−1 (·)
signify the conditional probability of the indicated event given Ft−1, and let εt be a
sequence of independent standard normal random variables (εt ∼ NID (0, 1)) such that

εt is independent of {yt−j, j > 0}. Furthermore, let st = (st,1, . . . , st,M) (t = 1, 2, . . .) be a

sequence of (unobserved) M—dimensional random vectors such that, conditional on Ft−1,
st and εt are independent. The components of st are such that, for each t, exactly one

of them takes the value one and others are equal to zero, with conditional probabilities

Pt−1 (st,m = 1) = αm,t, m = 1, . . . ,M . Now yt can be expressed as

yt =
M∑
m=1

st,m(µm,t + σmεt) =
M∑
m=1

st,m

(
ϕm,0 +

p∑
i=1

ϕm,iyt−i + σmεt

)
. (3)

This formulation suggests that the mixing weights αm,t can be thought of as probabilities

that determine which one of the M autoregressive components of the mixture generates

the next observation.

From (1)—(2) or (3) one immediately finds that the conditional mean and variance of

yt given Ft−1 are

E[yt | Ft−1] =
M∑
m=1

αm,tµm,t =
M∑
m=1

αm,t

(
ϕm,0 +

p∑
i=1

ϕm,iyt−i

)
(4)

and

V ar[yt | Ft−1] =

M∑
m=1

αm,tσ
2
m +

M∑
m=1

αm,t

(
µm,t −

(
M∑
m=1

αm,tµm,t

))2
. (5)

These expressions apply for any specification of the mixing weights αm,t. The conditional

mean is a weighted average of the conditional means of theM autoregressive components

with weights generally depending on the past history of the process. The conditional vari-

ance also contains a similar weighted average of the conditional (constant) variances of the

M autoregressive components but there is an additional additive term which depends on

the variability of the conditional means of the component processes. This additional term

makes the conditional variance nonconstant even if the mixing weights are nonrandom

and constant over time.
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2.2 The Gaussian Mixture Autoregressive (GMAR) model

The mixture autoregressive model considered in this paper is based on a particular choice

of the mixing weights in (1). Using the parameters ϕm,0, ϕm = (ϕm,1, . . . , ϕm,p) and σm
(see equation (1) or (3)) we first define the M auxiliary Gaussian AR(p) processes

νm,t = ϕm,0 +

p∑
i=1

ϕm,iνm,t−i + σmεt, m = 1, . . . ,M,

where the autoregressive coeffi cients ϕm are assumed to satisfy

ϕm (z) = 1−
p∑
i=1

ϕm,iz
i 6= 0 for |z| ≤ 1, m = 1, . . . ,M. (6)

This condition implies that the processes νm,t are stationary and also that each of the

component models in (3) satisfies the usual stationarity condition of the conventional

linear AR(p) model. Set νm,t = (νm,t, . . . , νm,t−p+1) and 1p = (1, . . . , 1) (p × 1), and let

µm1p and Σm,p signify the mean vector and covariance matrix of νm,t (m = 1, . . . ,M).

Here µm = ϕm,0/ϕm (1) and each Σm,p, m = 1, . . . ,M , has the familiar form of being

a p × p symmetric Toeplitz matrix with γm,0 = Cov[νm,t, νm,t] along the main diagonal,

and γm,i = Cov[νm,t, νm,t−i], i = 1, . . . , p− 1, on the diagonals above and below the main

diagonal. For the dependence of the covariance matrix Σm,p on the parameters ϕm and

σm, see Reinsel (1997, Sec. 2.2.3). The random vector νm,t follows the p—dimensional

multivariate normal distribution with density

np (νm,t;ϑm) = (2π)−p/2 det(Σm,p)
−1/2 exp

{
−1

2
(νm,t − µm1p)

′Σ−1m,p (νm,t − µm1p)

}
. (7)

Now set yt−1 = (yt−1, . . . , yt−p), and define the mixing weights αm,t as

αm,t =
αmnp

(
yt−1;ϑm

)∑M
n=1 αnnp

(
yt−1;ϑn

) , (8)

where the αm ∈ (0, 1), m = 1, . . . ,M , are unknown parameters satisfying
∑M

m=1 αm = 1.

(Clearly, the coeffi cients αm,t are measurable functions of yt−1 = (yt−1, . . . , yt−p) and

satisfy
∑M

m=1 αm,t = 1 for all t.) We collect the unknown parameters to be estimated in

the vector θ = (ϑ1, . . . ,ϑM , α1, . . . , αM−1) ((M(p+ 3)− 1)× 1); the coeffi cient αM is not

included due to the restriction
∑M

m=1 αm = 1. Equations (1), (2), and (8) (or (3) and

(8)) define the Gaussian Mixture Autoregressive model or the GMAR model. We use

the abbreviation GMAR(p,M) when the autoregressive order and number of component

models need to be emphasized.
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A major motivation for specifying the mixing weights as in (8) is theoretical attrac-

tiveness. We shall discuss this point briefly before providing an intuition behind this

particular choice of the mixing weights. First note that the conditional distribution of

yt given Ft−1 only depends on yt−1, implying that the process yt is Markovian. This
fact is formally stated in the following theorem which shows that there exists a choice

of initial values y0 such that yt is a stationary and ergodic Markov chain. An explicit

expression for the stationary distribution is also provided. As will be discussed in more

detail shortly, it is quite exceptional among mixture autoregressive models or other related

nonlinear autoregressive models such as TAR models or STAR models that the stationary

distribution is fully known. As our empirical examples demonstrate, this result is also

practically very convenient.

The proof of the following theorem can be found in the Appendix.

Theorem 1. Consider the GMAR process yt generated by (1), (2), and (8) (or, equiva-

lently, (3) and (8)) with condition (6) satisfied. Then yt = (yt, . . . , yt−p+1) (t = 1, 2, . . .)

is a Markov chain on Rp with a stationary distribution characterized by the density

f(y;θ) =
M∑
m=1

αmnp (y;ϑm) . (9)

Moreover, yt is ergodic.

Thus, the stationary distribution of yt is a mixture of M multinormal distributions

with constant mixing weights αm that appear in the time varying mixing weights αm,t de-

fined in (8). An immediate consequence of this result is that all moments of the stationary

distribution exist and are finite. In the proof of Theorem 1 it is also demonstrated that the

stationary distribution of the (p+ 1)—dimensional random vector
(
yt,yt−1

)
is a Gaussian

mixture with density of the same form as in (9) or, specifically,
∑M

m=1 αmnp+1 ((y,y);ϑm)

with an explicit form of the density function np+1 ((y,y);ϑm) given in the proof of The-

orem 1. It is straightforward to check that the marginal distributions of this Gaussian

mixture belong to the same family (this can be seen by integrating the relevant compo-

nents of (y,y) out of the density). It may be worth noting, however, that this does not hold

for higher dimensional realizations so that the stationary distribution of
(
yt+1, yt,yt−1

)
,

for example, is not a Gaussian mixture. This fact was already pointed out by Glasbey

(2001) who considered a first order version of the same model by using a slightly different

formulation. Glasbey (2001) did not discuss higher order models explicitly and he did not

establish ergodicity obtained in Theorem 1. Interestingly, in the discussion section of his
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paper he mentions that a drawback of his model is that joint and conditional distributions

in higher dimensions are not Gaussian mixtures. It would undoubtedly be convenient in

many respects if all finite dimensional distributions of a process were Gaussian mixtures

(with constant mixing weights) but an undesirable implication would then be that ergod-

icity could not hold true. We demonstrate this in the Appendix by using a simple special

case.

A property that makes our GMAR model different from most, if not all, previous

nonlinear autoregressive models is that its stationary distribution obtained in Theorem 1

is fully known (for a discussion, see Teräsvirta, Tjøstheim, and Granger (2010, Sec. 3.4.1)).

As illustrated in Section 4 a nonparametric estimate of the stationary density of yt can

thus be used (as one tool) to assess the need of a mixture model and the fit of a specified

GMAR model. It is also worth noting that in order to prove Theorem 1 we are not forced

to restrict the parameter space over what is used to define the model and the parameter

space is defined by familiar conditions that can readily be checked. This is in contrast with

similar previous results where conditions for stationarity and ergodicity are only suffi cient

and restrict the parameter space or, if sharp, cannot be verified without resorting to

simulation or numerical methods (see, e.g., Cline (2007, JTSA)). It is also worth noting

that Theorem 1 can be proved in a much more straightforward manner than most of its

previous counterparts. In particular, we do not need to apply the so-called drift criterion

which has been a standard tool in previous similar proofs (see, e.g., Bec, Rahbek, and

Shephard (2008), Meyn and Tweedie (2009)). On the other hand, our GMAR model

assumes that the components of the mixture satisfy the usual stationarity condition of

a linear AR(p) model which is not required in all previous models. For instance, Bec,

Rahbek, and Shephard (2008) prove an analog of Theorem 1 with M = 2 without any

restrictions on the autoregressive parameters of one of the regimes (see also Cline (2007)).

Unless otherwise stated, the rest of this section assumes the stationary version of

the process. According to Theorem 1, the parameter αm (m = 1, . . . ,M) then has an

immediate interpretation as the unconditional probability of the random vector yt =

(yt, . . . , yt−p+1) being generated from a distribution with density np (y;ϑm), that is, from

themth component of the Gaussian mixture characterized in (9). As a direct consequence,

αm (m = 1, . . . ,M) also represents the unconditional probability of the component yt be-

ing generated from a distribution with density n1 (y;ϑm) which is the mth component of

the (univariate) Gaussian mixture density
∑M

m=1 αmn1 (y;ϑm) where n1 (y;ϑm) is the den-

sity function of a normal random variable with mean µm and variance γm,0. Furthermore,

it is straightforward to check that αm also represents the unconditional probability of (the
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scalar) yt being generated from themth autoregressive component in (3) whereas αm,t rep-

resents the corresponding conditional probability Pt−1 (st,m = 1) = αm,t. This conditional

probability depends on the (relative) size of the product αmnp
(
yt−1;ϑm

)
, the numerator

of the expression defining αm,t (see (8)). The latter factor of this product, np
(
yt−1;ϑm

)
,

can be interpreted as the likelihood of the mth autoregressive component in (3) based on

the observation yt−1. Thus, the larger this likelihood is the more likely it is to observe yt
from the mth autoregressive component. However, the product αmnp

(
yt−1;ϑm

)
is also

affected by the former factor αm or the weight of np
(
yt−1;ϑm

)
in the stationary mixture

distribution of yt−1 (evaluated at yt−1; see (9)). Specifically, even though the likelihood

of the mth autoregressive component in (3) is large (small) a small (large) value of αm
attenuates (amplifies) its effect so that the likelihood of observing yt from themth autore-

gressive component can be small (large). This seems intuitively natural because a small

(large) weight of np
(
yt−1;ϑm

)
in the stationary mixture distribution of yt−1 means that

observations cannot be generated by the mth autoregressive component too frequently

(too infrequently).

It may also be noted that the probabilities αm,t are formally similar to posterior

model probabilities commonly used in Bayesian statistics (see, e.g., Sisson (2005) or Del

Negro and Schorfheide (2011). An obvious difference is that in our model the parameters

ϑ1, . . . ,ϑM are treated as fixed so that no prior distributions are specified for them. There-

fore, the marginal likelihood used in the Bayesian setting equals the density np (y;ϑm)

associated with the mth model. However, as αm only requires knowledge of the station-

ary distribution of the process, not observed data, it can be thought of as one’s prior

probability of the observation yt being generated from the mth autoregressive component

in (3). When observed data Ft−1 (or yt−1) are available one can compute αm,t, an ana-
log of the corresponding posterior probability, which provides more accurate information

about the likelihood of observing yt from the mth autoregressive component in (3). Other

things being equal a decrease (increase) in the value of αm decreases (increases) the value

of αm,t. That the stationary distribution of the process explicitly affects the conditional

probability of observing yt from the mth autoregressive component appears intuitively

natural regardless of whether one interprets αm as a prior probability or a mixing weight

in the stationary distribution.

Using the facts that the density of
(
yt,yt−1

)
is
∑M

m=1 αmnp+1
(
(yt,yt−1);ϑm

)
and that

of yt is
∑M

m=1 αmn1 (y;ϑm) we can obtain explicit expressions for the mean, variance, and

first p autocovariances of the process yt. With the notation introduced in equation (7) we
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can express the mean as

µ
def
= E [yt] =

M∑
m=1

αmµm

and the variance and first p autocovariances as

γj
def
= Cov (yt, yt−j) =

M∑
m=1

αmγm,j +
M∑
m=1

αm (µm − µ)2 , j = 0, 1, . . . , p.

Using these autocovariances and Yule-Walker equations (see, e.g., Box, Jenkins, and Rein-

sel (2008, p. 59)) one can derive the parameters of the linear AR(p) process that best

approximates a GMAR(p,M) process. As higher dimensional stationary distributions are

not Gaussian mixtures and appear diffi cult to handle no simple expressions are available

for autocovariances at lags larger than p.

2.3 Discussion of models

In this section, we discuss the GMAR model in relation to other nonlinear autoregressive

models introduced in the literature. If the mixing weights are assumed constant over

time the general mixture autoregressive model (1) reduces to the MAR model studied by

Wong and Li (2000). The MAR model, in turn, is a generalization of a model considered

by Le, Martin, and Raftery (1996). Wong and Li (2001b) considered a model with time-

varying mixing weights. In their Logistic MAR (LMAR) model, only two regimes are

allowed, with a logistic transformation of the two mixing weights, log(α1,t/α2,t), being

a linear function of past observed variables. Related two-regime mixture models with

time-varying mixing weights were also considered by Gourieroux and Robert (2006) and

Bec, Rahbek, and Shephard (2008). Lanne and Saikkonen (2003) considered a mixture

AR model in which multiple regimes are allowed. In their model, the mixing weights are

specified as

αm,t =


1− Φ((yt−d − c1)/ση), m = 1,

Φ((yt−d − cm−1)/ση)− Φ((yt−d − cm)/ση), m = 2, . . . ,M − 1,

Φ((yt−d − cM−1)/ση), m = M,

(10)

where Φ(·) denotes the cumulative distribution function of a standard normal random
variable, d ∈ Z+ is a delay parameter, and the real constants c1 < · · · < cM−1 are location

parameters. In their model, the probabilities determining which of the M autoregressive

components the next observation is generated from depend on the location of yt−d relative

to the location parameters c1 < · · · < cM−1. Thus, when p = d = 1 a similarity between
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the mixing weights in the model of Lanne and Saikkonen (2003) and in the GMAR model

is that the value of yt−1 gives indication concerning which regime will generate the next

observation. However, even in this case the functional forms of the mixing weights and

their interpretation are rather different.

An interesting two-regime mixture model with time-varying mixing weights was re-

cently introduced by Dueker, Sola, and Spagnolo (2007) (see also Dueker, Psaradakis,

Sola, and Spagnolo (2011) for a multivariate extension).1 In their model the mixing

weights are defined by

α1,t =
Φ
(
(c1 − ϕ1,0 −ϕ′1yt−1)/σ1

)
Φ
(
(c1 − ϕ1,0 −ϕ′1yt−1)/σ1

)
+
[
1− Φ

(
(c1 − ϕ2,0 −ϕ′2yt−1)/σ2

)] (11)

and α2,t = 1 − α1,t. Here c1 is interpreted as a location parameter similar to that in

the model of Lanne and Saikkonen (2003). However, similarly to our model the mixing

weights are determined by p lagged values of the observed series and the autoregressive

parameters of the component models. This makes the interpretation of the mixing weights

closer to that of our GMAR model than is the case for the model of Lanne and Saikkonen

(2003). The probability that the next observation is generated from the first or second

regime is determined by the locations of the conditional means of the two autoregressive

components from the location parameter c1 whereas in the GMAR model this probability

is determined by the stationary densities of the two component models and their weights

in the stationary mixture distribution. The functional form of the mixing weights of

Dueker, Sola, and Spagnolo (2007) is also similar to ours except that instead of the

Gaussian density function used in our GMAR model Dueker, Sola, and Spagnolo (2007)

have the Gaussian cumulative distribution function.

The GMAR model is also related to threshold and smooth transition type nonlinear

models. In particular, the conditional mean function E[yt | Ft−1] of our GMAR model
is similar to those of a TAR or a STAR model (see, e.g., Tong (1990) and Teräsvirta

(1994)). In a basic two-regime TAR model, whether a threshold variable (a lagged value

1According to Dueker et al. (2007, 2011) their model belongs to the family of STAR models. However,

it is not clear to us whether this model should be regarded as a STAR model or a mixture model. Initially

Dueker, Sola, and Spagnolo (2007) use equations (1)—(4) of their paper to define the model and these

equations lend support to the interpretation of the model as a STAR model. However, treating the model

as a mixture model also appears reasonable because the likelihood function used to fit the model to data

is determined by conditional density functions that are of the mixture form (1) (with φ (·) a possibly
nonnormal density). These conditional density functions are given in equation (7) of Dueker, Sola, and

Spagnolo (2007) but but their connection to the aforementioned equations (1)—(4) is not clear to us.
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of yt) exceeds a certain threshold or not determines which of the two component models

describes the generating mechanism of the next observation. The threshold and threshold

variable are analogous to the location parameter c1 and the variable yt−d in the mixing

weights used in the two-regime (M = 2) mixture model of Lanne and Saikkonen (2003)

(see (10)). In a STAR model, one gradually moves from one component model to the

other as the threshold (or transition) variable changes its value. In a GMAR model,

the mixing weights follow similar smooth patterns. A difference to STAR models is that

while the mixing weights of the GMAR model vary smoothly, the next observation is

generated from one particular AR component whose choice is governed by these mixing

weights. In a STAR model, the generating mechanism of the next observation is described

by a convex combination of the two component models. This difference is related to the

fact that the conditional distribution of the GMAR model is of a different type than the

conditional distribution of the STAR (or TAR) model which is not a mixture distribution.

This difference is also reflected in differences between the conditional variances associated

with the GMAR model and STAR (or TAR) models.

Figure 1 illustrates the preceding discussion. In the top panels, we plot the mixing

weight α1,t of the GMAR model as a function of yt−1 = y in the case M = 2, p = 1, with

certain parameter combinations. The bottom left panel shows α1,t in some cases for the

LMAR model of Wong and Li (2001b); in the model of Lanne and Saikkonen (2003) α1,t
behaves in a comparable way (no picture presented). The two pictures on the left illustrate

that the three models can produce mixing weights of similar monotonically increasing pat-

terns. The figure in the top left panel also illustrates the previously mentioned fact about

the mixing weights of the GMAR model that, other things being equal, a decrease in the

value of αm decreases the value of αm,t. In the conditional expectation of a basic logistic

two-regime STAR model, referred to as the LSTAR1 model in Teräsvirta, Tjøstheim, and

Granger (2010, Sec. 3.4.1), the transition function, which is the counterpart of the mixing

weight α1,t, also behaves in a similar monotonically increasing way. Given these observa-

tions it is interesting that with suitable parameter values our GMAR model can produce

nonmonotonic mixing weights even in the case M = 2. The top right panel illustrates

this. The models of Wong and Li (2001b) and Lanne and Saikkonen (2003) can produce

mixing weights of this form only when M > 2. Similarly, in LSTAR models a transition

function of this form cannot be obtained with a LSTAR1 model. For that one needs an

LSTAR2 model (see Teräsvirta, Tjøstheim, and Granger (2010, Sec. 3.4.1)) or some other

similar model such as the exponential autoregressive model of Haggan and Ozaki (1981).

Thus, once the number of component models is specified our GMAR model appears more

12



Figure 1: Top left panel: α1,t in the GMAR model (p = 1) as a function of yt−1. Parameter

values used: model 1: ϕ1,0 = 0.5, ϕ2,0 = −0.5, ϕ1,1 = ϕ2,1 = 0.5, σ
2
1 = σ22 = 1, α1 = 0.5; model

2: same as model 1 but α1 = 0.7; model 3: same as model 1 but α1 = 0.9; model 4: ϕ1,0 = 1,

ϕ2,0 = −1, ϕ1,1 = ϕ2,1 = 0.5, σ21 = σ22 = 1, α1 = 0.5; model 5: ϕ1,0 = ϕ2,0 = 0.5, ϕ1,10.75,

ϕ2,1 = 0.25, σ21 = σ22 = 1, α1 = 0.5. Top rigth panel: α1,t in the GMAR model (p = 1) as

a function of yt−1. Parameter values used: model 1: ϕ1,0 = ϕ2,0 = 0, ϕ1,1 = 0.2, ϕ2,1 = 0.9,

σ21 = 0.25, σ
2
2 = 4, α1 = 0.5; model 2: same as model 1 but σ

2
1 = σ22 = 0.5, α1 = 0.7; model 3:

same as model 1 but σ22 = 0.25. Bottom left panel: α1,t in the model of Wong and Li (2001)

as a function of yt−1. Logistic equation assumed to be of the form log(α1,t/α2,t) = γ(yt−1 − c),
or equivalently, α1,t = 1

1+e−γ(yt−1−c)
. Note that this is exactly the standard form of the logistic

function. Curves correspond to different values of c and γ. Bottom right panel: α2,t = 1−α1,t
in the model of Dueker, Sola, and Spagnolo (2007) as a function of yt−1. Parameter values used:

model 1: c1 = 1, ϕ1,0 = −0.5, ϕ2,0 = 0.5, ϕ1,1 = ϕ2,1 = 0.9, σ1 = 3, σ2 = 2; model 2: c1 = 1,

ϕ1,0 = −1, ϕ2,0 = 1, ϕ1,1 = ϕ2,1 = 0.9, σ1 = 3, σ2 = 2; model 3: c1 = 0, ϕ1,0 = −1, ϕ2,0 = 1,
ϕ1,1 = ϕ2,1 = 0.9, σ1 = σ2 = 3; model 4: c1 = 0, ϕ1,0 = −10, ϕ2,0 = 10, ϕ1,1 = ϕ2,1 = 0.7,

σ1 = 5, σ2 = 4; model 5: c1 = 0, ϕ1,0 = ϕ2,0 = 0, ϕ1,1 = −0.3, ϕ2,1 = 0.3, σ1 = 1, σ2 = 0.25.
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flexible in terms of the form of mixing weights than the aforementioned previous mixture

models and the same is true when the mixing weights of our GMAR model are com-

pared to the transition functions of LSTAR models. As far as the mixing weights of the

model of Dueker, Sola, and Spagnolo (2007) are concerned they can be nonmonotonic,

as illustrated in the bottom right panel of Figure 1. After trying a number of different

parameter combinations it seems, however, that (at least in the case p = 1) nonmonotonic

mixing weights are rather special for this model. The first four (monotonic) graphs in the

bottom right panel correspond to parameter configurations in Table 2 of Dueker, Sola,

and Spagnolo (2007). The fourth one is interesting in that it produces a nearly constant

graph (the graph would be constant if the values of the standard deviations σ1 and σ2
were changed to be equal). Finally, note that a common convenience of the GMAR model

as well as of the models of Wong and Li (2001b) and Dueker, Sola, and Spagnolo (2007)

is that there is no need to choose a threshold variable such as yt−d in the model of Lanne

and Saikkonen (2003) or in TAR and STAR models.

3 Estimation

The parameters of the GMAR model can be estimated by the method of maximum like-

lihood (ML). As the stationary distribution of the GMAR process is known it is even

possible to make use of initial values and construct the exact likelihood function and

obtain exact ML estimates, as already discussed by Glasbey (2001) in the first order

case. Assuming the observed data y−p+1, ..., y0, y1, ..., yT and stationary initial values the

log-likelihood function takes the form

lT (θ) = log

(
M∑
m=1

αmnp (y0;ϑm)

)
(12)

+

T∑
t=1

log

(
M∑
m=1

αm,t (θ)
(
2πσ2m

)−1/2
exp

(
−
(
yt − µm,t (ϑm)

)2
2σ2m

))
,

where dependence of the mixing weights αm,t and the conditional expectations µm,t of

the component models on the parameters is made explicit (see (8) and (2)). Maximiz-

ing the log-likelihood function lT (θ) with respect to the parameter vector θ yields the

ML estimate denoted by θ̂ (a similar notation is used for components of θ̂). Here we

have assumed that the initial values in the vector y0 are generated by the stationary

distribution. If this assumption seems inappropriate one can condition on initial val-

ues and drop the first term on the right hand side of (12). For reasons of identification
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the inequality restrictions α1 ≥ α2 ≥ · · · ≥ αM are imposed on the parameters αm,t(
m = 1, ...,M, αM = 1−

∑M
m=1 αm

)
. In our empirical examples we have used the opti-

mization algorithms in the cmlMT library of Gauss to maximize the likelihood function or

its conditional version. Especially the Newton-Raphson algorithm in that library seemed

to work quite well but one could alternatively follow Wong and Li (2001b) and use the

EM algorithm.

Dueker, Sola, and Spagnolo (2007) show that, under appropriate regularity conditions,

the usual results of consistency and asymptotic normality of the ML estimator hold in their

mixture model. The conditions they use are of general nature and using the ergodicity

result of Theorem 1 along with similar “high level”conditions it is undoubtedly possible

to show the consistency and asymptotic normality of the ML estimator in our GMAR

model as well. However, we prefer to leave a detailed analysis of this issue for future

work. In our empirical examples we treat the ML estimator θ̂ as approximately normally

distributed with mean vector θ and covariance matrix the inverse of the Fisher information

matrix E [−∂2lT (θ) /∂θ∂θ′] that can be estimated by inverting the observed information

matrix −∂2lT (θ̂)/∂θ∂θ′. It is worth noting that the aforementioned results require a

correct specification of the number of autoregressive components. In particular, standard

likelihood-based tests are not applicable if the number of component models is chosen too

large because then some parameters of the model are not identified. This particularly

happens when one tests for the number of component models. For further discussion of

this issue, see Dueker et al. (2007, 2011) and the references therein.

4 Empirical example

To illustrate how the GMAR model works in practice we present an example with interest

rate data. Interest rate series are typically highly persistent and exhibit behavior possibly

due to regime switching dynamics. Consequently, various regime switching models have

previously been used in modelling interest rate series. Examples can be found in Hamilton

(1988), Garcia and Perron (1996), Enders and Granger (1998), Banzal and Zhou (2002),

Dueker, Sola, and Spagnolo (2007), and Dueker, Psaradakis, Sola, and Spagnolo (2011).

The data set we use differs from those employed by these authors in that it also contains

the recent turbulences of the financial crisis since 2008. Before empirical analyses we

provide a brief discussion on some general aspects of building a GMAR model.

As mentioned in the previous section, standard likelihood-based tests cannot be used

to test for the number of component models. Instead of trying to develop proper test
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procedures for this purpose we use residual based diagnostics and information criteria

(AIC and BIC) to select a model. As discussed in Kalliovirta (2012), conventional Pear-

son residuals are unsuitable for mixture models and, therefore, we use quantile residuals

and related diagnostic tests developed in that paper. These tests correctly allow for the

uncertainty caused by parameter estimation so that, under correct specification, the ob-

tained p-values are asymptotically valid. Note also that for the linear Gaussian AR model

the quantile residuals are identical to conventional (Pearson) residuals. We used cmlMT

library in GAUSS Windows Version 10.0 to estimate the parameters of the model. The

estimation codes are available upon request from the first author.

We start the model building by finding a conventional linear Gaussian AR model that

adequately describes the autocorrelation structure of the series. If the residual diagnostics

show signs of non-Gaussianity and possibly also conditional heteroskedasticity we consider

the GMAR model. At this point also the graph of the series and a nonparametric estimate

of the density function may be useful. To reduce the risk of estimating an unidentified

model we first consider a two component model, that is GMAR(p, 2). Our first guess

for the order p bases on the order chosen for the linear AR model. However, in our first

attempts with the GMAR model we also consider smaller alternatives if the order selected

for the linear AR model appears large. If an adequate two component model is not found

we try a three component model and, if needed, we consider even more components.

After finding an adequate GMAR model we examine possible simplifications obtained by

parameter restrictions. For instance, some of the parameters may be restricted to be

equal in each component.

We consider the difference between the U.S. and Euro Area long-term government

bond yields using monthly observations from January 1989 to December 2009.2 This

series, also referred to as interest-rate differential, is depicted in the left panel of Figure 2

(solid line). The autocorrelation at the first lag, 0.987, indicates that the series is highly

persistent and around 1997 the level of the series has dropped.

For this series AIC and BIC suggested linear AR(2) and AR(5) models when the con-

sidered maximum order was eight (parameters of these models were estimated by least

squares). There seemed to be some autocorrelation in the residuals of the AR(2) model

which were largely eliminated by the AR(5) model. However, in terms of residual diag-

2The data was retrieved from the OECD Statistics. The Euro area data prior to 2001 refer to EU11

(Belgium, Germany, Ireland, Spain, France, Italy, Luxembourg, the Netherlands, Austria, Portugal and

Finland), from 2001 to 2006 refer to EU12 (EU11 plus Greece), and from January 2007 data refer to

EU13 (EU12 plus Slovenia).
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Figure 2: Left panel: Interest rate differential between US and Euro area, and scaled

mixing weights based on the estimates of the restricted GMAR(2,2) model in Table 2.

The scaling is such that α̂1,t = max yt, when α̂1,t = 1, and α̂1,t = min yt, when α̂1,t = 0.

Right panel: A kernel density estimate of the observations and mixture density implied

by the same GMAR(2,2) model as in the left panel.

nostics the AR(4) model appeared equally good and was chosen as a more parsimonious

alternative. Although the AR(4) model behaved reasonably well in terms of residual au-

tocorrelations the squared residuals were correlated and the distribution of the residuals

was clearly nonnormal (these conclusions also apply to the AR(5) model). Table 1 re-

ports the values of AIC and BIC for the linear AR(4) model along with the (quantile)

residual based tests of normality, autocorrelation, and conditional heteroskedasticity. The

results show that the tests for normality and conditional heteroskedasticity clearly reject

the AR(4) model. A nonparametric kernel density estimate (not shown) indicates that

compared to the normal distribution the error distribution is heavy tailed. The kernel

density estimate of the original series depicted in the right panel of Figure 2 similarly

suggests clear departures from normality. The estimate is bimodal with the mode 0.33 at

-0.18 and a local mode 0.18 at 2.2.

Of the GMAR models we first tried an unrestricted GMAR(2, 2) specification. Two

AR components seem to match with the graph of the series, where two major levels

can be seen, as well as with the bimodal expression of the kernel density estimate (see

Figure 2). For this series all estimation and test results based on the exact likelihood and

conditional likelihood were practically the same, so we only present those based on the

exact likelihood. We used the formula µm = ϕm,0/ϕm (1) with ϕm (1) = 0.1 and µ1 and
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Table 1: P-values of tests based on quantile residuals and exact likelihood

N A1 A4 H1 H4 max lT (θ) AIC BIC

AR(4) 0 0.36 0.27 0.003 0 58.3 -107 -89

GMAR(2,2) 0.81 0.97 0.12 0.98 0.77 79.7 -145 -121

NOTE: The test statistic for normality, N , is based on moments of quantile residuals and the test

statistics for autocorrelation, Ak, and conditional heteroskedasticity, Hk, are based on the first

k autocovariances and squared autocovariances of quantile residuals, respectively. Under correct

specification, test statistic N is approximately distributed as χ22 (AR(4)) or χ
2
3 (GMAR(2,2))

and test statistics Ak and Hk are approximately distributed as χ2k. A p-value < 0.001 is denoted

by 0. For the Gaussian AR(4) model quantile residuals are identical to conventional (Pearson)

residuals. GMAR(2,2) refers to a restricted model with a common AR polynomials (see Table

2).

µ2 chosen to match with the locations of the mode and local mode, respectively, to com-

pute the initial values for ϕ1,0 and ϕ2,0. Our experience on the estimation of GMARmodels

indicates that good initial values for these intercept terms are important for numerical

optimization of the likelihood function whereas the precision of initial values used for the

AR coeffi cients and error variances appears less critical.

According to quantile residual diagnostics (not reported) the unrestricted GMAR(2, 2)

specification turned out to be adequate but, as the AR polynomials in the two components

seemed to be very close to each other, we restricted them to be the same. This restriction

was not rejected by the LR test (p-value 0.61) and, as Table 1 shows, diagnostic tests based

on quantile residuals also lend support to the restricted GMAR(2, 2) model. To get a wider

picture of the properties of quantile residuals Figure 3 depicts the time series and QQ-plot

of quantile residuals as well as the first ten standardized sample autocovariances of quantile

residuals and their squares (the employed standardization is such that, under correct

specification, the distribution of the sample autocovariances is approximately standard

normal). The time series of quantile residuals computed from a correctly specified model

should resemble a realization from an independent standard normal sequence. The graph

of quantile residuals and related QQ-plot give no obvious reason to suspect this, although

some large positive quantile residuals occur. According to the approximate 99% critical

bounds only two somewhat larger autocovariances are seen but even they are found at

larger lags (we use 99% critical bounds because, from the viewpoint of statistical testing,

several tests are performed). It is particularly encouraging that the GMARmodel has been

able to allow for the conditional heteroskedasticity observed in the considered linear AR
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Figure 3: Diagnostics of the restricted GMAR(2,2) model described in Table 2. Top

left panel: Time series of quantile residuals. Top right panel: QQ-plot of quantile

residuals. Bottom left panel: Ten first scaled autocovariances of quantile residuals.

Bottom right panel: Ten first scaled autocovariances of squared quantile residuals.

The lineas in the bottom panels show approximate 99% critical bounds.

models (see the bottom right panel of Figure 3 and the first panel of Table 1). Thus, unlike

the linear AR models the GMAR(2, 2) model seems to provide an adequate description

for the interest rate series and according to AIC and BIC it also outperforms the chosen

linear AR(4) model by a wide margin (this also holds for the more parsimonious linear

AR(2) model suggested by BIC).

Table 2 displays estimates obtained for the parameters of the restricted GMAR(2, 2)

model as well as estimates derived for the expectations µm and elements of the covariance

matrix Σm,2 (see Section 2.2). The estimated sum of the AR coeffi cients is 0.966 which is

slightly less than the corresponding sum 0.982 obtained in the linear AR(4) model. The
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Table 2: Parameter estimates of the restricted GMAR(2,2) model based on exact likeli-

hood

max lT (θ) ϕ01 ϕ02 ϕ11 ϕ21 α1 σ21 σ22

79.7 0.041
(0.022)

−0.011
(0.006)

1.262
(0.064)

−0.296
(0.065)

0.586
(0.174)

0.058
(0.008)

0.011
(0.002)

µ1 µ2 γ1,0 γ1,1 γ1,1/γ1,0 γ2,0 γ2,1 γ2,1/γ2,0

1.175 -0.321 1.214 1.182 0.973 0.221 0.215 0.973

NOTE: Approximate standard errors obtained by taking square roots of the diagonal elements

of the matrix (−∂2lT (θ̂)/∂θ∂θ′)−1 in parentheses.

reduction is presumably related to the differences in the intercept terms of the AR compo-

nents which is directly reflected in different means of the two regimes with point estimates

1.175 and -0.321. The estimated error variances of the AR components are also very dif-

ferent and, consequently, the same is true for the variances of the two regimes with point

estimates 1.214 and 0.221. This feature is of course related to the above-mentioned fact

that the model has been able to remove the conditional heteroskedasticity observed in

linear modeling. According to the approximate standard errors in Table 2 the estimation

accuracy appears quite reasonable except for the parameter α1, the weight of the first

component in the stationary distribution of the GMAR(2, 2) process. The point estimate

of this parameter is 0.586 with approximate standard error 0.174. A possible explanation

for this rather unreliable estimation is that the series is not suffi ciently long to reveal the

nature of the stationary distribution to which the parameter α1 is directly related. To

put this another way, with the estimated parameter values the process may generate real-

izations that look rather different from our series. On the other hand, this does not show

in differences between estimates based on exact likelihood and conditional likelihood, a

potential reason being that the observed series starts rather close to its mean.

Based on the estimates of Table 2, Figure 4 shows the estimate of the two dimensional

stationary mixture density
∑2

m=1 αmn2 (y;ϑm) along with a related contour plot. A

figure of the one dimensional mixture density
∑2

m=1 αmn1 (y;ϑm) and its two components

is also included. These figures clearly illustrate the large differences between the shapes

of the two component densities already apparent in the estimates of Table 2. The one

dimensional mixture density is also drawn in the right panel of Figure 2 (dashed line)

and, as can be seen, there are rather large departures between the density implied by

the model and the nonparametric kernel density estimate. The density implied by the

model is more peaked and more concentrated than the kernel density estimate. The kernel
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Figure 4: Estimate of the two dimensional stationary mixture density implied by the

GMAR(2,2) model described in Table 3 (below), its contour plots (middle), and the

corresponding one dimensional marginal density and its two components (above).

density estimate may not be too reliable, however, because in some parts of the empirical

distribution the number of observations seems to be rather small and the choice of the

bandwidth parameter has a noticeable effect on the shape of the kernel density.

Figure 2 (left panel) depicts the time series of the estimated mixing weight α̂1,t scaled

so that α̂1,t = max yt, when α̂1,t = 1, and α̂1,t = min yt, when α̂1,t = 0 (dashed line).

During the period before 1996 or 1997 the first regime is clearly dominating. Except for

only a few exceptional months the mixing weights α̂1,t are practically unity. This period

corresponds to a high level regime or regime where U.S. bond yields are smaller than Euro

Area bond yields. After this period a low level regime, where U.S. bond yields are larger

than Euro Area bound yields, prevails until 2008 or the early stages of the financial crisis.

Interestingly, the period roughly between 1997 and 2004 is “restless”in that several narrow
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spikes in the estimated mixing weights occur. Because no marked increases appear in the

level of the series it seems reasonable to relate these spikes to the rather large differences

between the variances in the two regimes. Although the second regime is here dominating

observations are occasionally generated by the first AR component whose estimated error

variance is six times the estimated error variance of the first AR component. However,

despite these large shocks from the first AR component the level of the series has remained

rather low. To discuss this point in more detail, recall that the mixing weights α1,t and α2,t
depend on the density functions n2(yt−1;ϑ1) and n2(yt−1;ϑ2) where yt−1 = (yt−1, yt−2).

As Figure 4 indicates, the density function n2(yt−1;ϑ2) is concentrated on the lower tail

of n2(yt−1;ϑ1) (see also the estimates in the lower panel of Table 2). This means that it is

possible for the process to be on both tails of these two dimensional distributions and at

the same time not far from the mean of n2(yt−1;ϑ2). Switching from the second regime

to the first one can then happen without much increase in the level of the series. This

seems to have happened between 1997 and 2004 when the series has evolved in the second

regime and the lower tail of the first regime. Based on the time series of estimated mixing

weights α̂1,t a reasonable interpretation is that the second regime has been dominating and

the process has only occasionally paid short visits to the (lower tail of the) first regime.

The domination of the second regime has been clearer from 2005 until the early stages

of the 2008 financial crisis when the first regime becomes dominating. During the last

couple of years the estimated mixing weights α̂1,t have part of the time been very high

but the level of the series has still remained rather moderate. Again, it seems reasonable

to think that the dominance of the first regime is mainly caused by its large variance.

This interpretation, as well as the one related to the narrow spikes between 1997 and

2004, is supported by the time series graph of the conditional variance implied by the

estimated model. Without showing this graph we just note that its shape is more or less

indistinguishable from the time series graph of the estimated mixing weight α̂1,t in the

left panel of Figure 2.

To gain further insight into the preceding discussion Figure 5 depicts the estimated

mixing weight α̂1,t as a function of yt−1 and yt−2. The functional form is similar to an over-

turned version of the estimated density function n2(yt−1; ϑ̂2). Outside an ellipse, roughly

corresponding to an ellipse where the estimated density n2(yt−1; ϑ̂2) has nonnegligible

mass, the estimated mixing weight α̂1,t is nearly unity and in the center of this ellipse,

or close to the point where yt−1 = yt−2 ≈ −0.5, the estimated mixing weight α̂1,t attains

its minimum value. The closer the series is to this minimum point the clearer it evolves

in the lower regime and when it approaches the border of the aforementioned ellipse the
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Figure 5: Estimated mixing weight α̂1,t of the restricted GMAR(2,2) model described in

Table 2.

probability of switching to the upper regime increases. The spikes in the time series graph

of α̂1,t in Figure 2 (left panel) between 1997 and 2004 have apparently occurred when the

series has been close to the border of this ellipse. It is interesting to note that the spikes

before 2001 have occurred when the level of the series is quite low so that the series

has evolved in a way which has increased the (conditional) probability of obtaining an

observation from the upper regime but without much increase in the level of the series.

As Figure 5 illustrates, this is possible. A feature like this may be diffi cult to capture

by previous mixture AR models as well as by TAR and STAR models in which regime

switches are basically determined by the level of the series. For instance, in the model

of Lanne and Saikkonen (2003) the probability of a regime switch is determined by the

level of a single lagged value of the series and similarly for TAR and STAR models (see

Tong (1990), Teräsvirta (1994), and Teräsvirta, Tjøstheim, and Granger (2010)). In the

models of Wong and Li (2001b) and Dueker, Sola, and Spagnolo (2007) regime switches

are determined by the level of a linear combination of a few past values of the series

but this hardly makes any major difference at least for persistent series like the one we

consider.
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5 Conclusion

This paper provides a more detailed discussion of the mixture AR morel considered by

Glasbey (2001) in the first order case. This model, referred to as the GMAR model,

has several attractive properties. Unlike other nonlinear AR models the GMAR model

has a clear probability structure which translates into simple conditions for stationarity

and ergodicity. These theoretical features are due to the definition of the mixing weights

which have a natural interpretation. As our empirical example demonstrates, the GMAR

model also appears flexible in applications being able to describe features in the data that

may be diffi cult to capture by alternative (nonlinear) AR models.

In this paper we have only considered a univariate version of the GMAR model. In

the future we plan to explore a multivariate extension. Providing a detailed analyses

of the asymptotic theory of estimation and statistical inference is another topic left for

future work. In this context, the problem of developing statistical tests that can be used

to test for the number of AR components is of special interest. Due to its nonstandard

nature this testing problem may be quite challenging, however. Finally, applications of

the GMAR model to different data sets will also be presented.

6 Technical Appendix

Proof of Theorem 1. We first note some properties of the stationary auxiliary au-

toregressions νm,t. Denoting ν+m,t = (νm,t,νm,t−1), it is seen that ν+m,t follows the (p+ 1)—

dimensional multivariate normal distribution with density

np+1
(
ν+m,t;ϑm

)
= (2π)−(p+1)/2 det(Σm,p+1)

−1/2

× exp

{
−1

2

(
ν+m,t − µm1p+1

)′
Σ−1m,p+1

(
ν+m,t − µm1p+1

)}
,

where 1p+1 = (1, . . . , 1) ((p + 1) × 1) and the matrices Σm,p+1, m = 1, . . . ,M , have

the usual symmetric Toeplitz form similar to their counterparts in (7) with each Σm,p+1

depending on the parameters ϕm and σm (see, e.g., Reinsel (1997, Sec. 2.2.3)). This joint

density can be decomposed as

np+1
(
ν+m,t;ϑm

)
= n1 (νm,t | νm,t−1;ϑm) np (νm,t−1;ϑm) , (13)

where the normality of the two densities on the right-hand side follows from properties

of the multivariate normal distribution (see, e.g., Anderson (2003, Theorems 2.4.3 and
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2.5.1)). Moreover, np (·;ϑm) clearly has the form given in (7), and making use of the

Yule-Walker equations (see, e.g., Box, Jenkins, and Reinsel (2008, p. 59)), it can be seen

that

n1 (νm,t | νm,t−1;ϑm) =
(
2πσ2m

)−1/2
exp

{
− 1

2σ2m
(νm,t − µm −ϕ′m(νm,t−1 − µm1p))

2

}
=

(
2πσ2m

)−1/2
exp

{
− 1

2σ2m
(νm,t − ϕm,0 −ϕ′mνm,t−1)2

}
. (14)

The rest of the proof makes use of the theory of Markov chains (for the employed

concepts, see Meyn and Tweedie (2009)). To make the Markov chain representation of yt
explicit we denote ıp = (1, 0, . . . , 0) (p× 1), and for m = 1, . . . ,M ,

Φm =


ϕm,1 · · · · · · ϕm,p

1 · · · 0 0
...

. . .
...

...

0 · · · 1 0

 .
Then (3) can be written as

yt =
M∑
m=1

st,m
(
ϕm,0ıp + Φmyt−1 + σmεtıp

)
,

making clear that yt is a Markov chain on Rp.
Now, let y0 = (y0, . . . , y−p+1) be a random vector whose distribution has the density

f(y0;θ) =
M∑
m=1

αmnp (y0;ϑm) .

According to (1) and (14), the conditional density of y1 given y0 is

f(y1 | y0;θ) =
M∑
m=1

αm,1n1 (y1 | y0;ϑm)

=

M∑
m=1

αm∑M
n=1 αnnp (y0;ϑn)

np (y0;ϑm) n1 (y1 | y0;ϑm)

=
M∑
m=1

αm∑M
n=1 αnnp (y0;ϑn)

np+1 ((y1,y0);ϑm) ,

where the second and third equalities are due to (8) and (13). It thus follows that the

density of (y1,y0) = (y1, y0, . . . , y−p+1) is

f((y1,y0);θ) =
M∑
m=1

αmnp+1 ((y1,y0);ϑm) .
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Integrating y−p+1 out it follows that the density of y1 is

f(y1;θ) =
M∑
m=1

αmnp (y1;ϑm)

Therefore, y0 and y1 are identically distributed. As {yt}
∞
t=1 is a (time homogeneous)

Markov chain, we can thus conclude that {yt}
∞
t=1 has a stationary distribution πy (·), say,

characterized by the density

f(·;θ) =

M∑
m=1

αmnp (·;ϑm)

(cf. Meyn and Tweedie (2009, pp. 230-231)). Being a mixture of multivariate normal

distributions, all moments of the stationary distribution are finite.

It remains to establish ergodicity. To this end, let P p
y(y, ·) = Pr(yp | y0 = y) signify

the p-step transition probability measure of yt. It is straightforward to check that P
p
y(y, ·)

has a density given by

f(yp | y0;θ) =

p∏
t=1

f(yt | yt−1;θ) =

p∏
t=1

M∑
m=1

αm,tn1
(
yt | yt−1;ϑm

)
.

The last expression makes clear that f(yp | y0;θ) > 0 for all yp ∈ Rp and all y0 ∈
Rp so that, from every initial state y0 = y (∈ Rp), the chain yt can in p steps reach
any set of the state space Rp with positive Lebesgue measure. Using the definitions of
irreducibility and aperiodicity we can therefore conclude that the chain yt is irreducible

and aperiodic (see Meyn and Tweedie (2009, Chapters 4.3 and 5.4)). Moreover, also the

p-step transition probability measure P p
y(y, ·) is irreducible, aperiodic, and has πy as its

invariant distribution (Meyn and Tweedie, 2009, Theorem 10.4.5).

A further consequence of the preceding discussion is that the p-step transition proba-

bility measure P p
y(y, ·) is equivalent to the Lebesgue measure on Rp for all y ∈ Rp. As the

stationary probability measure πy(·) also has a (Lebesgue) density positive everywhere
in Rp it is likewise equivalent with the Lebesgue measure on Rp. Consequently, the p-
step transition probability measure P p

y(y, ·) is absolutely continuous with respect to the
stationary probability measure πy(·) for all y ∈ Rp.
To complete the proof, we now use the preceding facts and conclude from Theorem 1

and Corollary 1 of Tierney (1994) that
∥∥P pn

y (y, ·)− πy(·)
∥∥→ 0 as n→∞ for all y ∈ Rp,

where ‖·‖ signifies the total variation norm of probability measures. Now, by Proposition
13.3.2 of Meyn and Tweedie (2009), also

∥∥P n
y (y, ·)− πy(·)

∥∥→ 0 as n→∞ for all y ∈ Rp
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(as the total variation norm is non-increasing in n). Hence, yt is ergodic in the sense of

Meyn and Tweedie (2009, Ch. 13).

Remark. In the discussion following Theorem 1 it was pointed out that non-ergodicity

would be an undesirable implication for a process having all finite dimensional distribu-

tions being Gaussian mixtures. To see that this holds in a particular special case, suppose

all finite dimensional distributions of a process xt, say, are Gaussian mixtures of the form

(9) so that, for any T ≥ 1, the distribution of a realization (x1, ..., xT ) is

f(x;θ) =

M∑
m=1

αmnT (x;ϑm) ,

where the density function nT (x;ϑm) is a T—dimensional analog of that in (7). The

process xt is clearly stationary. For simplicity, consider the special case where M = 2,

ϕm,i = 0 (i = 1, . . . , p, m = 1, 2), σ1 = σ2 = σ, and ϕ1,0 6= ϕ2,0. Then nT (x;ϑi) is the

joint density of T independent Gaussian random variables with mean ϕi,0 and variance

σ2 (i = 1, 2). This means that, for every T ,

(x1, ..., xT ) ∼
{
nT (x;ϑ1) , with probability α1
nT (x;ϑ2) , with probability 1− α1.

This implies that, for every T , the sample mean X̄T = T−1
∑T

t=1 xt is distributed as

N(ϕ1,0, σ
2/T ) with probability α1 and as N(ϕ2,0, σ

2/T ) with probability 1 − α1. As

ϕ1,0 6= ϕ2,0 and 0 < α1 < 1 is assumed, it is therefore immediate that no law of large

numbers holds, and consequently the process xt cannot be ergodic. Indeed, it is not

diffi cult to check that X̄T converges in distribution to a random variable taking the values

ϕ1,0 and ϕ2,0 with probability α1 and 1− α1, respectively.
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