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Abstract

The paper develops an easy-to-apply test for contagion. The new test
takes into account all the main challenges contagion tests face; that of endo-
geneity, distinguishing interdependencies from contagion, and heteroskedas-
ticity. To address these challenges the testing is conducted in the structural
vector autoregression (SVAR) framework where we assume the reduced form
errors follow a mixed-normal distribution. The framework enables us to ap-
ply a recently developed SVAR model identification method with no need
to restrict any of the instantaneous linkages between the variables. We ap-
ply our test to the eurozone government bond data. The sample period is
the years 2009–2010 and, so, coincides with the beginning of the sovereign
debt crisis in the eurozone. Evidence of contagion is found. Especially, it
appears that the contagion effects were quite complex without any single
source country of contagion.
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1 Introduction

Contagion is a surprisingly hard topic. The main idea is simple; markets might
transmit one country’s economic woes to other countries. Thus, local crises po-
tentially become regional or even global. However, the empirical research on the
matter is full of challenges.1 The first one is that of endogeneity; the second con-
cerns the often apparent heteroskedasticity in financial time series; and, finally,
any empirical contagion model should be careful how to define contagion.

The endogeneity issue arises because the financial markets often react to news
almost instantaneously. So, one usually needs to work with a system of simulta-
neous equations. Disentangling a cause and consequences is then hard unless the
researcher is prepared to do–sometimes even harsh–identifying assumptions. Also,
financial time series often exhibit strains of heteroskedasticity which might even
be the very consequence of contagion. Hence, the selected model should address
such possible changes in the market volatilities.

When it comes to defining contagion, one needs to be careful. As pointed out by
Forbes and Rigobon (2002), simply detecting high correlations between countries’
market returns during a crisis does not necessarily constitute contagion. Financial
markets are usually highly interdependent also during normal times; then, high cor-
relation during a crisis might just be a continuation of the pre-crisis linkages. Only,
if there is evidence of crisis-contingent structural changes in the shock transmis-
sion mechanisms across the countries, one should talk of contagion.2 Otherwise,
crisis-time correlations are only evidence of high interdependencies between the
countries. Separating contagion from interdependence and, so, testing for crisis-
contingent structural changes in the international shock propagation mechanisms
is now a norm in the empirical contagion literature (see, for example, Dungey, Fry,
Gonzalez-Hermosillo, and Martin (2005); Corsetti, Pericoli, and Sbracia (2005);
Caporale, Cipollini, and Spagnolo (2005); Pesaran and Pick (2007); Billio and
Caporin (2010); Metiu (2012)).3

1There are several good surveys on the contagion literature, both those emphasizing theo-
retical models and those focusing on the empirical work. For some quite thorough literature
reviews, see for example Pericoli and Sbracia (2003); Forbes and Rigobon (2001); Dungey, Fry,
Gonzalez-Hermosillo, and Martin (2005); or Dornbusch, Park, and Claessens (2000).

2Although some researchers do not recommend using the term contagion given its negative
connotations, we will stick to this established terminology. Notice, however, that our definition
of contagion, that of there being crisis-contingent structural changes in shock propagation mech-
anisms, includes not only all possible negative effects that a negative shock in one country might
have on others, but also the so-called ”flight-to-quality” effects where a crisis somewhere makes
investors to sell assets in countries regarded as weak and to buy them in countries seen to be
safer. For a discussion and criticism on the validity of the term contagion, see the introduction
in Favero and Giavazzi (2002).

3For motivation and some examples on the distinction between contagion and interdepen-
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In his modeling then, the researcher should take into account all the three
challenges while still keep his model identifiable and easy to follow. In this spirit,
this paper develops a general but still simple-to-apply test for contagion which ad-
dresses all the listed challenges. Our test is build on the structural vector autore-
gressive (SVAR) model of Favero and Giavazzi (2002). The Favero and Giavazzi
model is not identifiable as such but we augment it with an additional assumption
concerning the distribution of the reduced from errors. We assume these errors
follow a mixed-normal distribution. This additional assumption allows us em-
ploy the recently proposed SVAR identification method by Lanne and Lütkepohl
(2010). We then implement the contagion test Favero and Giavazzi propose by
testing the stability of the parameters that control the international transmission
of the country specific shocks. The model can be estimated with the method of
maximum likelihood and the contagion testing is performed by using the standard
likelihood ratio test.

In our empirical application we use our test to see whether there is evidence
of contagion in the government bond markets of a selected group of the eurozone
member countries in the years 2009–2010. The data we use is the ten years govern-
ment bond spreads over Germany of Greece, Portugal, Ireland, Spain, and Italy.
Evidence of contagion is found and, furthermore, the contagion effects seem to
be quite complex. According to the analysis there was not one source country
of contagion but several. This point, that during a crisis there might be more
complex reciprocal contagion effects than only from one crisis country to others,
is often ignored in the contagion literature. By using the estimated mixture prob-
ability of the mixed-normal distribution as a weight, we also calculate weighted
correlation coefficients of the country spreads both during the normal times and
the crisis. Because these coefficients automatically take into account the possible
heteroskedasticities in the spreads, they are better suited for correlation analysis
than the ones used in many of the earlier contagion studies.4

Our test, perhaps, most closely resembles two previously presented contagion
tests: the determinant of the change in the covariance matrix test by Rigobon

dence, see Forbes and Rigobon (2001).
4Perhaps the main insight of the Forbes and Rigobon (2002) paper was to underline that,

because during crises volatility in financial markets usually rises, (conditional) correlation coeffi-
cients calculated during the crisis are upwards biased. So, if the analysis is based on comparing
pre-crisis correlations in returns against crisis times correlations, and if higher correlation during
the crisis is considered as evidence of contagion, as it used to be in the earlier research (see,
for example, Calvo and Reinhart (1996); King and Wadhwani (1990); Lee and Kim (1994)), the
results might be biased. The higher-than-before correlation during a crisis could be only results
of higher volatility, not any new structural shock transmission channels. So, the conditional
correlation coefficients need to be adjusted for heteroskedasticity. But the adjustment Forbes
and Rigobon suggest assumes no endogeneity in the model. This is of course a very strong
assumption.
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(2003b), and the multivariate contagion test of Dungey, Fry, Gonzalez-Hermosillo,
and Martin (2005, 11–12). The former calculates the covariance matrices (of the
market returns) in normal and crisis times, calculates the changes in the covari-
ances, and takes the determinant of this changes-in-covariances matrix. If the
determinant is zero, the paper argues, the shock propagation mechanisms have
stayed stable during the crisis. Hence, there is not contagion. Rigobon’s test,
however, basically requires that we know which are the crisis countries and that
part of the sample countries are non-crisis countries. Our test do not require this.
We simply need to be able to identify the crisis periods from the normal times.
This can usually be done more or less accurately.5 The latter test, that of Dungey
and the others, is, in contrast, a latent factor model mostly applicable for asset
return time series with zero mean. Such series are usually obtained by taking
the first differences of the variables. Once one is interested in investigating the
financial variables in their level values, a (S)VAR framework is probably more
suitable.

Because the main objective of the contagion tests is to measure changes in
the instantaneous dependencies between financial variables, the more traditional
SVAR identification methods that rely of restricting some these dependencies are,
of course, not that desirable. Instead of restricting any of the potential contagion
effects a priori, we would like to let the data determine, as freely as possible, if
they exists or not.6 Similar to the the Lanne-Lütkepohl identification method some
other authors have used particularities in the data as a source of the needed extra
information for the SVAR model identification. For example, Rigobon (2003a)
introduces a heteroskedasticity based identification method that has been suc-
cessfully applied in the contagion–and the volatility spillover–literature (see, for
example, Caporale, Cipollini, and Spagnolo (2005); Caporale, Cipollini, and Deme-
triades (2005); Rigobon (2002); Rigobon and Sack (2003)). However, unlike Lanne
and Lütkepohl who assume the non-normalities are exhibited in the reduced form
errors’ joint distribution, Rigobon assumes heteroskedasticity in the structural
shocks. The original Favero and Giavazzi model, in its turn, assumes the struc-
tural shocks are homoskedastic and, because of contagion, the reduced form errors
might be heteroskedastic. This favors using the Lanne-Lütkepohl method in our
context.

The rest of the paper is organized as follows. Section 2 provides a short review
of the theoretical contagion channels. Section 3, presents our empirical model and

5For examples of clear-cut crisis periods see, in addition to the Rigobon paper, Forbes and
Rigobon (2002); Dungey, Fry, Gonzalez-Hermosillo, and Martin (2005); Corsetti, Pericoli, and
Sbracia (2005).

6Of course, sometimes there are well justified institutional reasons for restrictions on (almost)
instantaneous effects. For example, Billio and Caporin (2010) consider markets in different time-
zones.
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the test for contagion. The Favero and Giavazzi model is also reviewed. Section
4 provides the empirical application of our test. Finally, section 5 gives some
concluding remarks.

2 Channels of Contagion

Why would crises be transmitted across countries in the first place? In theory,
there are several possible reasons for contagion. It could be a result of information
asymmetries among investors (King and Wadhwani, 1990; Kodres and Pritsker,
2002); of more global financial markets in a world where investors face information
costs together with (legal or institutional) restrictions on short selling (Calvo and
Mendoza, 2000); or of self-fulfilling investor expectations as a crisis hitting one
country forces investors to update their beliefs also on its peer countries, making
economies to jump between multiple equilibria (Masson, 1999).

However, perhaps the most compelling contagion theories build on the idea
that it is the international banks who via their balance sheets propagate shocks
across the countries. Allen and Gale (2000) consider a case where an unexpected
regional liquidity demand shock causes a chain of bankruns across regions. Plainly
put, they argue that the less complete is the international network of banks and
their reciprocal claims, the less there is ”cushion” to protect a single bank against
a bankrun. Also, Mendoza and Quadrini (2010) show, when the banks follow
the mark-to-market accounting rule and face minimum capital requirements, a
negative shock to to the value of equity of a bank (or a group of banks in one
country) might create a chain reaction leading into a global credit crunch as the
banks need to limit their lending.

Kiyotaki and Moore (2002) discuss two other ways companies’ balance sheets
might propagate shocks. First, based on their well known model on credit cycles
(Kiyotaki and Moore, 1997), they argue that when firms (partly) finance their op-
erations with bank loans that are backed by a collateral, and the value of collateral
is proportional to the market price of the firms’ assets, a negative production shock
to even a small group of firms might affect a larger group of firms all of whom rely
on bank lending. The reason is that as the negative production shock decreases
the current value of production of the initially affected firms, the market value
of their assets, also, decreases. However, then, the decrease in the market value
of the collaterals is not limited only to the first-hit companies but affects also all
the other firms who have provided similar types of collaterals for their bank loans.
Hence, this second group of firms need also to cut down some of their investments
and, so, their future production. The initial shock multiplies across the economy.
The second mechanism the authors consider corresponds to a situation where a
group of firms are linked to each other via a chain of mutual claims and liabilities.

5



Then, whenever one of the firms defaults its debt and, if this debt is an asset of
another firm, the default might lead into a chain of defaults.

All of these theories explain why a shock might get transmitted across firms,
industries, or countries. However, it is hard to estimate them. So, the empirical
research has mainly taken the alternative approach that was explained in the in-
troduction, that of contagion vs. interdependence. There is evidence of contagion
only if there is evidence of structural changes in the international shock transmis-
sion mechanisms during a crisis. However, the theories reviewed in this section, in
their turn, explain such structural changes.

3 The Model

Denote country i’s government bond yield in period t as yit and that of the German
government bond as y∗t . Country i’s bond spread over Germany in period t then
becomes sit = yit − y∗t . Consider the case of n ≥ 2 countries and assume the
following SVAR model for the spreads:

st = Ast−1 + B (In + CDt) εt, (1)

where st is the (n × 1) vector of the country spreads; A, B and C are (n × n)
coefficient matrices; and In is the (n × n) identity matrix. The (n × 1) vector
εt = [ε1t, . . . , εnt]

′ corresponds to the country specific structural shocks which are
assumed to be uncorrelated of each other. The matrix Dt = diag(d1t, . . . , dnt) is
diagonal and includes country specific crisis dummies. All these dummies equal to
zero during the normal times. But if there is a crisis in period t that originates in
country i, we will have dit = 1 and djt = 0 for all j 6= i.

The model in equation (1) was proposed by Favero and Giavazzi (2002) to
model contagion in government bonds. During the normal times, because Dt = 0,
the international transmission of structural shocks is determined solely by the
matrix B. So, this matrix captures the interdependencies between the countries.
However, when there is a crisis in country i and, so, we have dit = 1, the transmis-
sion channel of the country i’s structural shock εit to country j is augmented by
a new factor, the coefficient cji. If cji was equal to zero, there would not be crisis-
contingent structural changes in the transmission mechanism of εit to country j.
So, in such a case, there would not be contagion from country i to country j.

Favero and Giavazzi conclude that, as a test for contagion, one would be willing
to test jointly whether all the n(n− 1) off-diagonal elements cji are equal to zero
(Favero and Giavazzi (2002, 234)). If they are, there will not be contagion during
a crisis; if not, there will be some contagion during a crisis. Unfortunately, the
model in equation (1) is unidentified and the Favero and Giavazzi contagion test
is not implementable. The next subsection proposes a concise way to perform the
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test. Briefly, the idea is to test if all the transmission channels stay stable during
a period of a crisis when compared to the normal times.

3.1 Test for contagion

For our test, we need to make an additional assumption concerning the matrix C.
Assume that all its main diagonal elements cii equal to zero. These coefficients de-
pict the possible, crisis-contingent structural changes in the within country effects
of the structural shocks. We will discuss little later how plausible this assumption
is. At this point it suffices to say that the assumption guarantees that we can
interpret any structural change in the transmission mechanisms during a crisis
being only from changes in the cross-country effects of the structural shocks. This
said, once we redefine B̃ = B (In + CDt), testing contagion boils down to testing
whether the matrix B̃ remains stable during a crisis or not.

During the normal times, when Dt = 0, we simply have that the B-matrix
equals to the interdependencies between the countries: B̃ = B. Let us denote this
matrix as B̃N. During a crisis instead, we have B̃ = B (In + CDt). Let us denote
this as B̃C. We then have the following two hypothesis:

H0 : B̃N = B̃C and H1 : B̃N 6= B̃C, (2)

where the null-hypothesis refers to the no contagion, only-interdependence result;
and the alternative hypothesis to the contagion result. Like the following subsec-
tion shows, testing of the null-hypothesis can be implemented with the standard
likelihood ratio (LR) test.

3.2 Implementation of the test

Assume the reduced form model corresponding to our SVAR model in equation
(1) is the following:

st = Ast−1 + ut, (3)

where the (n × 1) reduced form error vector ut = B (In + CDt) εt = B̃εt. This
corresponds to the B-model framework of the SVAR models (for more details on
the B-model, see, for example, Lütkepohl (2007, 362–64)). Then, the question is
how to identify the structural shocks and, so, estimate the matrix B. We will
follow the idea of Lanne and Lütkepohl (2010) and exploit non-normalities in the
data to identify the model. We assume especially that ut follows a mixed-normal
distribution, so that

ut =

{
e1t ∼ N (0,Σ1) with probability γ,
e2t ∼ N (0,Σ2) with probability 1− γ, (4)
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where N (0,Σi) denotes a multivariate normal distribution with zero mean and
(n× n) covariance matrix Σi. Hence, e1t and e2t are two serially independent
Gaussian error vectors. For the mixture probability γ ∈ (0, 1) to be identifiable,
one needs to assume that the covariance matrices Σ1 and Σ2 are (at least partly)
distinct.

3.2.1 Identification of the structural model

Lanne and Lütkepohl show that there exist a nonsingular (n× n) matrix W and
a (n × n) diagonal matrix Ψ = diag(ψ1, . . . , ψn) with all diagonal elements being
strictly positive, such that the covariance matrices in the mixed-normal distribu-
tion in equation (4) can be decomposed in the following way: Σ1 = WW′ and
Σ2 = WΨW′. This result follows from the covariance matrices being symmetric
and positive definite (for details, see the appendix in the Lanne and Lütkepohl
paper). Provided that all the elements ψi are distinct from each other, the matrix
W is unique (apart from changing the signs of the elements in every column).

The covariance of the reduced form errors then becomes

Σu = γΣ1 + (1− γ)Σ2 = W (γIn + (1− γ)Ψ) W′. (5)

On the other hand, from ut = B̃εt it follows that Σu = B̃ΣεB̃
′. When we nor-

malize the SVAR model by assume all the structural errors have a unit variance7,
so we assume εt ∼ (0, In), it follows that Σu = B̃B̃′. Comparing this with the
covariance matrix in equation (5) allows us to choose

B̃ = W (γIn + (1− γ)Ψ)1/2 .

Once we also assume8 that the elements {ψ1, . . . , ψn} are in some pre-defined order,
for example in the descending order, on the main diagonal of the matrix Ψ, the
matrix B̃ is unique (Lanne, Lütkepohl, and Maciejowska, 2010).

7The unit variance assumption is a common way to normalize a SVAR model. Alternatively,
one could allow the structural shock variances σεi being any positive real number and, instead,
assume that all the main diagonal elements of the matrix B̃ equal to one. Kilian (2011) discusses
several possible ways to normalize a SVAR model.

8This assumption does not affect the generality of our test. This can be seen in the following
way: first, as Kohonen (2012) shows, whenever we choose B̃ = W(γIn + (1−γ)Ψ)1/2, where the
elements on the diagonal of the matrix Ψ are in some pre-specified order, we could as well choose
B̂ = (WP′)(γIn+(1−γ)PΨP′)1/2 as our B-matrix. Here, P is an arbitrary (n×n) permutation

matrix. Second, using any B̂ instead of B̃ simply reshuffles the order of the structural shocks in
the vector εt. To see this, notice that the part (γIn+(1−γ)PΨP′)1/2 = (P(γIn+(1−γ)Ψ)P′)1/2

in B̂ is diagonal, so it equals to P(γIn+(1−γ)Ψ)1/2P′. It follows that B̂ = B̃P′ (remember that

P is orthogonal, and so PP′ = In). Hence, the matrix B̂ is simply a column-wise permutation

of B̃. On the other hand, denote as ε̂t the structural shocks that correspond to the matrix B̂,
hence we have ut = B̃εt = B̂ε̂t, and then ε̂t = (B̂)−1B̃εt = (B̃P′)−1B̃εt = P′−1B̃−1B̃εt = Pεt,
where P′−1 = P is a result from P being orthogonal. So, ε̂t is simply a row-wise permutation on
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3.2.2 Estimation of the unrestricted model

We will test the null-hypothesis of no-contagion in equation (2) against the alter-
native hypothesis of contagion by estimating two separate models; an unrestricted
model that corresponds to the alternative hypothesis, and a restricted model that
corresponds to the null-hypothesis. The models are estimated with the method
of maximum likelihood (ML), so we can us the standard LR test to test the null-
hypothesis against the alternative hypothesis. Assuming the (S)VAR models are
stationary, we can refer to the standard ML testing theory.

The unrestricted SVAR model corresponding to the alternative hypothesis of
B̃N 6= B̃C is the following:

st = Ast−1 + dNB̃Nεt + dCB̃Cεt,

where dN and dC are dummies indicating normal times and crisis times, respec-
tively. The corresponding reduced form model is

st = Ast−1 + dNuN
t + dCuC

t ,

where the normal and crisis times error vectors uN
t and uC

t follow mixed-normal
distributions

uN
t =

{
eN

1t ∼ N (0,W1W
′
1) with probability γ1,

eN
2t ∼ N (0,W1Ψ1W

′
1) with probability 1− γ1,

and

uC
t =

{
eC

1t ∼ N (0,W2W
′
2) with probability γ2,

eC
2t ∼ N (0,W2Ψ2W

′
2) with probability 1− γ2.

The normal times error term uN
t has density

f(uN
t ) =γ1(2π)−n/2det(W1W

′
1)−1/2 exp

{
−1

2
uN ′

t(W1W
′
1)−1uN

t

}
+ (6)

+ (1− γ1)(2π)−n/2det(W1Ψ1W
′
1)−1/2 exp

{
−1

2
uN ′

t(W1Ψ1W
′
1)−1uN

t

}
.

the vector εt. Only one of these permutations will coincide with the situation where the country
one specific shock ε1t is placed first, the country two specific shock ε2t second, etc. But as long
as we are simply interested in testing the stability of the effects of the structural shocks (as we
are in this paper), we do not need to identify this ”correct” permutation. It is enough to assume
that our structural model in equation (1), augmented with the distributional assumption (4), is
correct–this is something that we naturally assume in the first place–and simply work with some
predefined order of the elements {ψ1, . . . , ψn}.

9



After neglect the constant terms, the conditional density of st during the normal
times becomes

fN(st|st−1) =γ1det(W1)−1 exp

{
−1

2
(st −Ast−1)′(W1W

′
1)−1(st −Ast−1)

}
+

+ (1− γ1)det(W1)−1det(Ψ1)−1/2× (7)

exp

{
−1

2
(st −Ast−1)′(W1Ψ1W

′
1)−1(st −Ast−1)

}
.

Similarly, after the obvious changes in the indexation, we get the density function
f(uC

t ) and the conditional density fC(st|st−1) for the crisis times. So, the joint
conditional density function of the unrestricted model is

f(st|st−1) = dNf
N(st|st−1) + dCf

C(st|st−1),

where, as before, dN = 1 and dC = 0 during the normal times, and vice versa
during the crisis times.

Collect all the parameters into the vector θ and assume for convenience, when
we have a sample of T periods, that the first T1 periods consists of the normal times
and the last T2 = T − T1 periods consists of a crisis period. (This assumption,
of course, need not to hold, and there can be more than one crisis period. Then
only, the conditional density and the log-likelihood function need to appropriately
modified. This should be very straightforward.) Then, the corresponding log-
likelihood function is

l(θ) =
T∑
t=1

log f(st|st−1)

=

T1∑
t=1

log fN(st|st−1) +

T2∑
t=1

log fN(st|st−1).

This can be maximized with the standard nonlinear optimization algorithms. No-
tice that in practice both of the time intervals T1 and T2 need to be long enough
so that all of the parameters can be estimated. So, this rules out very short crisis
periods.

3.2.3 Estimation of the restricted model

The SVAR model corresponding to the null-hypothesis of no-contagion, where we
assume B̃N = B̃C = B̃, is

st = Ast−1 + B̃εt.

The corresponding reduced form model equals to the model in equation (3) with
the error vector ut following the mixed-normal distribution in equation (4), where
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the covariance matrices are decomposed as Σ1 = WW′ and Σ2 = WΨW′. The
density of the error term ut is similar to the density function in equation (6) with
only the obvious changes in the indexation. Likewise, the conditional density of st
is similar to the conditional density function in equation (7). Then it follows that
the log-likelihood function of the restricted model becomes

l(θ) =
T∑
t=1

log f(st|st−1),

where the vector θ again collects all the parameters of the restricted model. Also
this function can be maximized with the standard optimization algorithms.

We can now test contagion by first estimating both of the models, the restricted
and the unrestricted one, and then use the LR test to see if the data supports the
null-hypothesis of no-contagion. For a stationary VAR model, the LR test statistic
asymptotically follows the χ2-distribution with n(n + 1) + 1 degrees of freedom.
The condition

B̃N = B̃C ⇐⇒
W1 (γ1In + (1− γ1)Ψ1)1/2 = W2 (γ2In + (1− γ2)Ψ2)1/2

imposes n2 restrictions on the W-matrices, n restrictions on the Ψ-matrices, and
one restriction on the mixture probability in our model.

3.2.4 Discussion on our assumptions

As it was stated in the beginning of subsection 3.1, we need to assume that all the
main-diagonal elements of the matrix C of the Favero and Giavazzi model equal
to zero. With the help of this assumption we can identify any structural change in
the matrix B̃ = B (In + CDt) as contagion. This subsection mainly concentrates
on discussing the implications of his assumption. But also, we point out that our
framework provides, perhaps, a little more natural interpretation for crisis periods
that that of Favero and Giavazzi.

For convenience, assume only two countries. Let us first consider normal times
which means that both of the crisis time dummies d1t and d2t equal to zero. The
Favero ang Giavazzi model in equation (1) then implies the following normal-times
covariance matrix between the countries’ spreads:

Cov(s1t, s2t) =

[
b11 b12

b21 b22

] [
b11 b21

b12 b22

]
,

where the normalization Var(ε1) = Var(ε2) = 1 is already incorporated. Consider
next, for example, a crisis period where the turmoil originates in country 1, so we
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have d1t = 1 and d2t = 0. The crisis-times covariance matrix between the country
spreads becomes

Cov(s1t, s2t) =

[
b11 b12

b21 b22

] [
(1 + c11)2 (1 + c11)c21

(1 + c11)c21 c2
21 + 1

] [
b11 b21

b12 b22

]
.

So we see that compared to the normal times, both c11 and c21 imply structural
changes in the contemporaneous linkages between the countries during a crisis in
country 1. However, the main role that the coefficient c11 plays is to create a
crisis-contingent, exogenous increase in the variance of country 1’s own spread.
This is because a non-zero c11 means bigger than before within country effect of
the structural shock ε1.

On the contrary, the coefficient c21 has true contagion effects in the model.
First, compared to the normal times, it raises the variance of country 2’s spread.
And remember, this rise is because of the crisis in country 1. Second, even when
we have c11 = 0, a non-zero c21 will increase (or possibly decreases) the covariance
between the countries’ spreads during the crisis. This is because a non-zero c21

means a crisis-contingent, structural change in the transmission of ε1 to country
2. Also, if we had c21 = 0 and c11 6= 0, the only effect of the crisis in country 1
would be to increase the variance of s1t.

This said, compared to the Favero and Giavazzi model, when we assume that
cii = 0 for all i = 1, . . . , n, we prevent the crisis-contingent, exogenously higher
variance of the spread in the source country of the crisis. But to counterbalance
this restriction, when it comes to the distribution of the structural shocks, we are
not so restrictive as Favero and Giavazzo are. They assume the structural shocks
vector εt follows a multi-normal distribution. In our framework this random vector
does not need to be Gaussian but could follow some more fat-tailed distribution.
The only thing we assume is that all the individual elements of the vector are
uncorrelated with each other, and of course the variances are normalized to one.

Our framework, then, allows for a relatively intuitive interpretation of a begin-
ning of a crisis period. Imagine there is an extreme (negative) realization of the
structural shock in a country. As a reaction to this extreme event, the markets
could trigger on some of the theoretical contagion mechanisms that were discussed
in section 2. This would create structural changes into the structural shocks’ trans-
mission mechanisms and, so, increase the volatility in the system. Once switched
on, it could take some time before the contagions mechanisms settle down. As
the more volatile period persists, there is a crisis. This way, in our framework,
although contagion still would be an exogenous event (triggering of the contagion
mechanisms), its reason would be endogenous (an extreme realization of one coun-
try’s idiosyncratic shock). In contrast, in the Favero and Giavazzi model a crisis
is a fully exogenous event.
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Our framework has one additional advantage compared to the Favero and Gi-
avazzi model and, also, to the majority of other contagion tests presented in the
literature. Our test do not require us to identify the source country of contagion
(or a crisis). Also, we can easily handle a case where there might be several source
countries in the same, for example because several countries almost simultaneously
meet extremely negative idiosyncratic shocks. For our test, it suffices to identify
the spell of a crisis. Of course, sometimes it might be hard to do so, but, as it was
argued in the introduction, often the beginning (an the end) of a crisis period can
be identified more or less accurately. Similarly, the beginning of the euro sovereign
debt crisis can be traced to the turn of the years 2009 and 2010.

4 Application of our test to the euro government

bonds

In November 2009 the then-newly elected Greece government informed that the
country’s public debt level was almost double the size the official statistics had
claimed before. But it was not until the beginning of 2010 before the situation
escalated into a crisis with Greece being bailed out, and especially the Irish and
Portuguese spreads substantially increasing (see figure 1).

INSERT FIGURE 1 AROUND HERE.

In this section we apply our contagion test to analyze contagion between five
eurozone member countries: Greece, Ireland, Portugal, Spain, and Italy. As em-
phasized by shadings in the figure 1, we consider the year 2009 as the normal times
and the year 2010 as the crisis time. Of course, in 2009 the world was already in
the middle of the financial crisis that originated in the U.S. subprime mortgage
markets. However, it was not until the beginning of the euro sovereign debt crisis
that the markets started to question the solvency of some of the euro member
countries. So, the year 2009 was still more or less a period of normal mutual
linkages between the eurozone’s sovereign bond spreads.

The data is from the Eurostat database and consists of the daily secondary
market yields of the ten years government bonds. As detailed in the beginning
of section 3, the yields have then been transformed into spreads over the German
bond. The sample period consists of 522 daily observations. Every country has
missing observations9, so before taking the spreads all missing values have been
substituted with the previous available observation.

In order to test for the null hypothesis of no contagion against the alternative
hypothesis of contagion in 2010 (see equation (2)), we first need to estimate the

9Germany has 6, Ireland 13, Greece 10, Spain 8, Italy 5, and Portugal 5.

13



restricted model that is detailed in section 3.2.3 for the whole sample period.
Then, we need to estimate the unrestricted model that is detailed in section 3.2.2.
After this we can test for contagion by testing the restricted model against the
unrestricted one with using the LR test. As long as our model is stationary, the LR
test statistic asymptotically follows the χ2-distribution with n2 degrees of freedom,
where n is the number of sample countries and n2 equals to the number of elements
in the B-matrix.

In order to select the correct lag length of the (S)VAR model, I have estimated
the restricted model with lags from one to three for the full sample period and
then used the Bayesian information criterion (BIC) to determine the correct lag
length. The BIC supports selecting the lag order of one. Also, we will allow for
non-zero constant (deterministic term) in the model.

4.1 Estimation of the restricted model

Table 1 shows the estimation results for the restricted model. The first part of
the table shows the estimated constant and the matrix A; for example, Ireland(-1)
means the lagged Irish value. It is evident that it is mainly the own lagged values
that an any significant effect on the countries’ spreads. The next rows report the
estimated matrix W, Ψ, and mixture probability γ. Because it is these parameters
(W, Ψ and γ) that determine the contemporaneous linkages between the countries
(the B-matrix), we see that are many significant instantaneous effects across the
countries.

However, as we have simply assumed the descending order for the main diagonal
elements ψi, and so we are not after actually identify the instantaneous linkages
between the countries (see footnote 8), there is no point in calculating the B-
matrix. It is the estimated covariance matrix Σ1 = WW′ that corresponds here
to the low volatility and Σ2 = WΨW′ to the high volatility distribution. The
mixture probability (γ) tells the probability of the reduced form error ut being
from the normal distribution with the covariance matrix Σ1. This probability is
around 0.66.

INSERT TABLE 1 AROUND HERE.

4.2 Estimation of the unrestricted model

Table 2 reports the estimated unrestricted model where we now have parameters
W1, Ψ1 and γ1 for the normal times (the year 2009), and W2, Ψ2 and γ2 for the
normal times (the year 2010). First, the estimated elements of the matrix A are
quite similar to those in the restricted model. And, especially, the own lags are
mostly the ones that have statistically significant coefficients. The estimates of
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the matrices W1 and W2, and Ψ1 and Ψ2 are little different from the estimates
of W and Ψ of the restricted model.

Notice that there are again many statistically significant elements in both of
the estimated W-matrices, and all the elements in the matrices Ψ1 and Ψ2 areS
statistically significant. This implies that there statistically significant contempo-
raneous cross-country effects during both of the years. According to the estimated
mixture probabilities γ1 and γ2 the probability of the reduced form errors being
drawn from the distribution with the covariance matrix Σ1 was almost the same in
2009 and 2012, 0.77 and 0.73 per cent respectively. These probabilities are around
ten per cent larger than in the restricted model.

INSERT TABLE 2 AROUND HERE.

4.3 Contagion test & Weighted correlation coefficients

The LR test testing the restricted model against the unrestricted one gets value
382.8 which is greater than the critical value of χ2-distribution with 31 degrees of
freedom at any reasonable significance level; for example, the critical value at the
5 % significance level is 45.0. Hence, we reject the null hypothesis of no-contagion
and conclude that there is evidence of contagion between the countries in 2010.
A detailed analysis of the bilateral contagion effects between every country pair
would require a full identification of the SVAR model which means we should be
able to identify the ”correct” permutation of the elements on the Ψ matrices’ main
diagonals. We leave the question of the full identification for the future research,
but for instance, in a little different kind of framework, Kohonen (2012) proposes
to use a specific news variable to fully identify the structural model.

However, even without fully identifying the SVAR model, we are able to ana-
lyze little further the role each of our sample countries play in the crisis. Based on
the estimated unrestricted mode, table 3 reports the mixture probability weighted
correlation coefficients for both of the years. These correlation coefficients summa-
rize the countries’ bilateral correlations in both of the multi-normal distributions,
N(0,Σ1) and N(0,Σ2), of our mixture-normal distributions. The weighted corre-
lation coefficients, for example for the year 2009, between countries i and j were
calculated as the following:

r
(w)
ij = γ · r(1)

ij + (1− γ) · r(2)
ij ,

where γ is the estimated mixture probability of the year, for example γ1 = 0.77
for 2009; and the correlation coefficients r

(1)
ij and r

(2)
ij were calculated based on the

year’s estimated covariance matrices Σ1 and Σ2, respectively.

INSERT TABLE 3 AROUND HERE.
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Table 3 emphasizes with bold numbers the weighted correlation coefficients
of 2010 of those pairs of the countries that saw an increase in their correlation
coefficients from the year 2009. The first observation is that only for three country
pairs the year 2012 correlation coefficient is greater than that of the year 2009,
these pairs are Ireland-Greece, Ireland-Italy, and Spain-Italy. Even the Ireland-
Italy 2010 coefficient is almost equal to the 2009 coefficient. Testing the equality
would require us to be bale to fully identify the model so that we would know
which of the B-matrix elements to restrict.

The second observation is that for both Greece and Portugal, their correlation
coefficients with the other countries fall–even quite substantially–in 2010 from
2009. So, at least according to these results, Greece and Portugal become less
integrated with the other member countries during the crisis. This decoupling
suggests that the rising bond spreads in these two countries was not transmitted
to the other countries. Rather, the results suggest towards a ”flight-to-quality”
effect; withdrawal of investments from Greece and Portugal in favor of the other
countries. But, a rigorous testing of this claim, is not possible with our framework.
Deducting an appropriate test is outside the scope of this paper but could be an
interesting topic for the future research.

The explanation for the mostly decreasing weighted correlation coefficients is
not so much a decrease in covariances between the countries but an increase in the
countries variances during the crisis. Especially, in the high-volatility distribution
of the the year 2012 with the covariance matrix Σ

(2)
2 = W2Ψ2W

′
2 all the countries

have much higher variances than in the corresponding covariance matrix of the year
2009, that is Σ

(1)
2 = W1Ψ1W

′
1. So, our framework allows us to easily adjust the

conditional correlation coefficients for possible, crisis-contingent heteroskedasticity
in the error distributions.

In their influential paper, Forbes and Rigobon (2002) show that because crises
usually lead into higher variances, conditional correlation coefficients that are not
adjusted for this crisis-contingent heteroskedasticity might provide very biased re-
sults. Based on this result, they then show that the results of many of the earlier
contagion studies that analyzed contagion with conditional correlation before and
after a crisis were biased. But unlike Forbes and Rigobon who need to assume no
endogeneity between the sample countries, our framework deals with endogeneity
issues automatically. In addition, calculation of our weighted correlations coeffi-
cients do not require us take any stance which of the countries see their variance
to increase, also this is indirectly taken care of by our model and we let the data
to speak for itself.
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5 Concluding remarks

In this paper we have developed a new and simple test for contagion. The test is
based on the ide of augmenting the SVAR model of Favero and Giavazzi (2002)
with an assumption concerning the distribution of the reduced form errors. The
errors are assumed to follow a mixed-normal distribution. This allows us to employ
the SVAR identification method proposed by Lanne and Lütkepohl (2010). The
identification method uses non-normalities, not parameter restrictions as a source
of the extra information that we need to identify our model. This way we are
able to estimate the parameters of the instantaneous effects between the variables.
In line with the prevailing empirical contagion literature, the main idea of our
contagion test is to test whether these parameters are stable across the normal
and crisis times. This approach constitutes a simple to apply test for contagion
where the standard test theory of ML estimation is applicable.

In the empirical application of the paper, we test for contagion in the eurozone
government bond spreads in 2009–2010. The sample includes five countries (Ire-
land, Greece, Spain, Italy and Portugal) whose ten years government bond spreads
of Germany are considered. Null-hypothesis of no contagion is rejected. In addi-
tion, we calculate mixture probability weighted correlation coefficients for both of
the years. According to these coefficients, the contagion effects seem quite complex
and we are tempted to conclude that there were not any single source country of
contagion. Such complex contagion effects–contagion also meaning any investors
”flight to quality”–are often forgotten in the empirical contagion literature.

Our test still relies on predefined normal and crisis periods. Although for many
recent crises more or less clear data cut-off points can be pointed out, in some cases,
our test might be susceptible for the selected crisis periods. There are several ways
to extend our model framework. One would be to consider some more fat tailed
error distributions than a mixed normal distribution; a mixed t-distribution could
be one candidate. Furthermore, Lanne and Lütkepohl (2010) show how to apply
their identification/estimation method to vector error correction model (VECM).
Because many financial variables in levels show evidence of unit roots, extending
our test to VECM framework might be fruitful.
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Table 1: Restricted model: Parameter estimates

Dependent variable
Explanatory variable Ireland Greece Spain Italy Portugal
Constant 0.003 0.052∗∗ 0.000 0.022 −0.009

(0.022) (0.026) (0.015) (0.012) (0.018)
Ireland(-1) 0.990∗∗∗ −0.006 0.004 0.003 −0.003

(0.009) (0.011) (0.006) (0.005) (0.008)
Greece(-1) 0.007 0.992∗∗∗ 0.007 0.004 0.019∗∗∗

(0.008) (0.010) (0.005) (0.004) (0.007)
Spain(-1) −0.025 0.104∗∗∗ 0.951∗∗∗ −0.009 −0.045

(0.035) (0.04) (0.022) (0.018) (0.030)
Italy(-1) 0.012 −0.091∗∗ 0.011 0.970∗∗∗ 0.038

(0.032) (0.037) (0.022) (0.018) (0.027)
Portugal(-1) 0.009 −0.005 0.004 0.001 0.968∗∗∗

(0.021) (0.025) (0.013) (0.011) (0.018)
Matrix W Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
Row 1 0.028∗∗∗ 0.006 0.048∗∗∗ 0.042∗∗∗ −0.023∗∗∗

(0.006) (0.072) (0.013) (0.008) (0.006)
Row 2 0.027∗∗∗ 0.061∗∗∗ −0.007 0.045∗∗∗ −0.026∗∗∗

(0.009) (0.014) (0.100) (0.009) (0.006)
Row 3 0.013∗∗∗ −0.001 0.000 0.046∗∗∗ 0.018∗∗∗

(0.002) (0.004) (0.004) (0.003) (0.005)
Row 4 0.009∗∗∗ −0.001 0.000 0.035∗∗∗ −0.027∗∗∗

(0.002) (0.003) (0.004) (0.003) (0.004)
Row 5 0.043∗∗∗ −0.006 0.007 0.024∗∗∗ −0.020∗∗∗

(0.004) (0.013) (0.010) (0.005) (0.004)
Matrix Ψ ψ1 ψ2 ψ3 ψ4 ψ5

24.212∗∗∗ 12.499∗∗∗ 10.867∗∗∗ 3.998∗∗∗ 0.849∗∗∗

(4.091) (1.955) (1.578) (0.630) (0.134)
Mixture prob. γ

0.658∗∗∗

(0.032)
NOTE:
Standard errors obtained from the inverse Hessian of the log-likelihood function.
(∗∗) / (∗∗∗) indicates statistical significance at 5 % / 1 % significance level.
The log-likelihood function gets value 5154.8.

Table 2: Unrestricted model: Parameter estimates

Dependent variable
Explanatory variable Ireland Greece Spain Italy Portugal
Constant 0.001 0.047∗∗ −0.005 0.013 −0.027

(0.020) (0.021) (0.014) (0.012) (0.018)
Ireland(-1) 0.997∗∗∗ −0.009 0.002 0.001 0.005

(0.009) (0.011) (0.006) (0.005) (0.009)
Continued on next page
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Table 2 – continued from previous page
Greece(-1) 0.008 1.006∗∗∗ 0.009 0.006 0.024∗∗∗

(0.008) (0.009) (0.005) (0.004) (0.008)
Spain(-1) −0.029 0.059 0.954∗∗∗ −0.010 −0.006

(0.032) (0.038) (0.023) (0.019) (0.034)
Italy(-1) 0.000 −0.066∗∗ 0.020 0.982∗∗∗ 0.032

(0.030) (0.030) (0.021) (0.017) (0.026)
Portugal(-1) 0.007 −0.020 −0.003 −0.005 0.938∗∗∗

(0.021) (0.024) (0.014) (0.011) (0.020)
MatrixW1 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
Row 1 0.035∗∗∗ −0.022 −0.012 0.047∗∗∗ 0.034∗∗

(0.013) (0.021) (0.012) (0.011) (0.016)
Row 2 0.029 0.027 0.012 0.034∗∗∗ 0.018

(0.015) (0.018) (0.009) (0.007) (0.012)
Row 3 0.003 0.007∗∗ 0.003 0.007 0.052∗∗∗

(0.004) (0.003) (0.005) (0.015) (0.004)
Row 4 0.004 0.005 0.011 0.039∗∗∗ 0.018

(0.003) (0.004) (0.007) (0.006) (0.013)
Row 5 0.006 0.009 −0.017∗∗ 0.041∗∗∗ 0.024

(0.006) (0.006) (0.008) (0.008) (0.014)
MatrixW2 Col. 1 Col. 2 Col. 3 Col. 4 Col. 5
Row 1 0.075∗∗∗ −0.002 0.019 0.027∗∗ −0.002

(0.008) (0.025) (0.016) (0.011) (0.014)
Row 2 0.049∗∗ 0.105∗∗∗ −0.034 0.038∗∗ −0.004

(0.023) (0.025) (0.066) (0.017) (0.017)
Row 3 0.023∗∗∗ 0.020 0.032∗∗ 0.021 −0.041∗∗∗

(0.007) (0.02) (0.014) (0.015) (0.014)
Row 4 0.016∗∗∗ 0.016 0.029∗∗∗ 0.026∗∗∗ −0.001

(0.006) (0.018) (0.011) (0.008) (0.013)
Row 5 0.062∗∗∗ 0.029 0.054∗∗ −0.043∗∗∗ 0.016

(0.011) (0.038) (0.024) (0.016) (0.016)
Matrix Ψ1 ψ1 ψ2 ψ3 ψ4 ψ5

18.318∗∗∗ 13.616∗∗∗ 5.15∗∗∗ 2.183∗∗∗ 1.171∗∗∗

(4.232) (2.989) (1.182) (0.560) (0.355)
Matrix Ψ2 ψ1 ψ2 ψ3 ψ4 ψ5

16.577∗∗∗ 8.489∗∗∗ 6.41∗∗∗ 2.131∗∗∗ 1.173∗∗

(3.657) (2.169) (1.467) (0.501) (0.575)
Mixture prob. γ1

0.769∗∗∗

(0.036)
Mixture prob. γ2

0.725∗∗∗

(0.049)
NOTE:
Standard errors obtained from the inverse Hessian of the log-likelihood function.
(∗∗) / (∗∗∗) indicates statistical significance at 5 % / 1 % significance level.
The log-likelihood function gets value 5346.2.
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Table 3: Mixture probability weighted correlation coefficients

Greece Spain Italy Portugal
2009 (2010) 2009 (2010) 2009 (2010) 2009 (2010)

Ireland 0.49 (0.41) 0.44 (0.61) 0.57 (0.58) 0.69 (0.58)

Greece – 0.64 (0.43) 0.78 (0.40) 0.65 (0.31)

Spain – – 0.47 (0.78) 0.64 (0.45)

Italy – – – 0.77 (0.55)

The bold 2010 numbers indicate an increase from 2009.

The weighted correlation coefficient between countries i and j was calculated

in the following way: r(w)
ij =γ·r(1)ij +(1−γ)·r(2)ij , where γ is the estimated

mixture probability of the period, and r
(1)
ij and r

(2)
ij are correlation coefficients

based on the periods estimated covariance matrices Σ1 and Σ2, respectively.

Figure 1: Ten years government bond spreads over Germany, 2009–2010 (daily
data)
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