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Abstract. We suggest improved tests for cointegration rank in the vector au-
toregressive (VAR) model and develop asymptotic distribution theory and local power
results. The tests are (quasi-)likelihood ratio tests based on a Gaussian likelihood,
but of course the asymptotic results apply more generally. The power gains relative
to existing tests are due to two factors. First, instead of basing our tests on the con-
ditional (with respect to the initial observations) likelihood, we follow the recent unit
root literature and base our tests on the full likelihood as in, e.g., Elliott, Rothenberg,
and Stock (1996). Secondly, our tests incorporate a “sign”restriction which generalizes
the one-sided unit root test. We show that the asymptotic local power of the proposed
tests dominates that of existing cointegration rank tests.
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1. Introduction
The cointegrated vector autoregressive (VAR) model has been and continues to be of great
importance in time series econometrics. Driven equally by theoretical interest and the needs
of applied work, the seminal work of Johansen (1988) and Johansen (1991) developed coin-
tegration rank tests within the VAR model.1 Subsequent contributions have generalized and
refined this work in a variety of ways, notably by proposing tests with (local asymptotic)
power properties superior to those of Johansen (e.g., Xiao and Phillips (1999), Hubrich,
Lütkepohl, and Saikkonen (2001), and the references therein). The purpose of this paper is
propose cointegration rank tests that share with the Johansen tests the feature that they
are of (quasi-)likelihood ratio type, yet enjoy the additional attraction that they dominate
existing tests (including those of Johansen) in terms of local asymptotic power.
In the related unit root testing literature, it has long been recognized that in models with

an unknown mean and/or a linear trend, the class of nearly effi cient unit root tests does not
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Evans Hall #3880, Berkeley, CA 94720. Email: mjansson@econ.berkeley.edu
1For a synthesis of the work by Johansen, see Johansen (1995).
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contain the Dickey and Fuller (1979, 1981, henceforth Dickey-Fuller) tests2, which can be
derived from a conditional (with respect to the initial observation) likelihood similar to the
Johansen cointegration rank tests. It was pointed out by Elliott, Rothenberg, and Stock
(1996) that the initial observation is very informative about the parameters governing the
deterministic component, and, indeed, Jansson and Nielsen (2011) showed that a likelihood
ratio test derived from the full likelihood implied by an Elliott-Rothenberg-Stock-type model
has superior power properties to those of the Dickey-Fuller tests in models with deterministic
components.
Like the Dickey-Fuller tests for unit roots, the cointegration rank tests due to Johansen

(1991) are derived from a conditional likelihood. In this paper we suggest improved tests for
cointegration rank in the VAR model, which are based on the full likelihood similar to the
unit root tests of Elliott, Rothenberg, and Stock (1996) and Jansson and Nielsen (2011). We
show that their qualitative finding about the relative merits of likelihood ratio tests derived
from conditional and full likelihoods extends to tests of cointegration rank. In addition,
our tests incorporate a “sign”restriction which generalizes the one-sided unit root test. We
develop the asymptotic distribution theory and show that the asymptotic local power of the
proposed tests dominates that of existing cointegration rank tests.
The remainder of the paper is laid out as follows. Section 2 contains our results on

the likelihood ratio tests for cointegration rank, which are derived in several steps with
each subsection adding another layer of complexity. Section 3 evaluates the asymptotic
null distributions and local power functions of the newly proposed tests by Monte Carlo
simulation. Some additional discussion is given in Section 4. The proofs of our theorems are
provided in Section 5.

2. Likelihood Ratio Statistics
Our development of test statistics proceeds in four steps, each step involving accommodation
of nuisance parameters not present in the previous step.

2.1. Unit Root Testing in the Zero-mean VAR(1) Model. We initially consider the
simplest special case, namely likelihood ratio tests of the multivariate unit root hypothesis
Π = 0 in the p-dimensional zero-mean Gaussian VAR(1) model

∆yt = Πyt−1 + εt, (1)

where y0 = 0, εt ∼ i.i.d. N (0, Ip) , and Π ∈ Rp×p is an unknown parameter of interest.
In our investigation of the large-sample properties of test statistics, we will follow much of

the recent literature on unit root and cointegration testing and use “local-to-unity”asymp-
totics in order to obtain local asymptotic power results. When testing the multivariate unit
root hypothesis Π = 0 in the model (1) , this amounts to employing the reparameterization

Π = ΠT (C) = T−1C (2)

and holding C ∈ Rp×p fixed as T →∞.
The statistics we consider are of the form

LRT (C) = supC̄∈C LT
(
C̄
)
− LT (0) , (3)

2For a review focusing on power, see Haldrup and Jansson (2006).
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where

LT (C) = −1

2

T∑
t=1

‖∆yt − ΠT (C) yt−1‖2

is the log likelihood function (modulo an unimportant constant), ‖·‖ is the Euclidean norm,
and C is some subset of Rp×p. As the notation suggests, the statistic LRT (C) is a likelihood
ratio statistic. Specifically, LRT (C) is a likelihood ratio statistic associated with the prob-
lem of testing the null hypothesis C = 0 against the alternative C ∈ C\ {0} .3 Equivalently,
LRT (C) is a likelihood ratio statistic associated with the problem of testing the null hypoth-
esis Π = 0 against the alternative Π ∈ ΠT (C) \ {0} , where ΠT (C) = {ΠT (C) : C ∈ C} .
To give examples of statistics that can be represented as in (3) , let Mp (r) denote the

set of elements of Rp×p with rank no greater than r. For r = 1, . . . , p, it can be shown that

LRT (Mp (r)) =
1

2

r∑
j=1

λj,

where λ1 ≥ . . . ≥ λp ≥ 0 are the eigenvalues of the matrix(
T∑
t=2

yt−1∆y′t

)′( T∑
t=2

yt−1y
′
t−1

)−1( T∑
t=2

yt−1∆y′t

)
.

The choices C =Mp (1) and C =Mp (p) are therefore seen to give rise to “known variance”
versions of the so-called maximum eigenvalue and trace statistics, respectively, e.g., Johansen
(1995).4

Setting C equal to a set of the formMp (r) is computationally and analytically convenient
insofar as it gives rise to a statistic LRT (C) admitting a closed form solution. However,
the fact that C implicitly characterizes the maintained hypothesis of the testing problem
suggests that improvements in power against cointegrating alternatives might be achieved
by choosing C in a manner that reflects restrictions implied by cointegration. To be specific,
consider the univariate case; that is, suppose p = 1. In this case, the (maximal eigenvalue
and trace) statistic LRT (R) corresponds to a squared Dickey-Fuller-type t-statistic (i.e., an
F -statistic), while the more conventional, and more powerful, one-sided Dickey-Fuller t-test
can be interpreted as being based on the statistic LRT (R−) , where R− = (−∞, 0] is the non-
positive half-line. In other words, incorporation of the natural restriction C ≤ 0, or Π ≤ 0, is
well known to be advantageous from the point of view of power in the univariate case. On the
other hand, we are not aware of any multivariate unit root tests incorporating such “sign”
restrictions, so it seems worthwhile to develop (possibly) multivariate tests which incorporate
“sign”restrictions and explore whether power gains can be achieved by employing these tests.
Doing so is one of the purposes of this paper.

3The statistic is defined here as the log-likelihood ratio, without the usual multiplication factor 2.
4The maximum eigenvalue and trace statistics have been derived by Johansen (1995) for the model with

unknown error covariance matrix, but they would reduce to statistics mentioned here if the covariance matrix
is treated as known. Under the assumptions of Theorem 1, the maximum eigenvalue and trace statistics of
Johansen (1995) are asymptotically equivalent to their “known variance” counterparts LRT (Mp (1)) and
LRT (Mp (p)) .
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To describe our proposed “sign” restriction, let M−
p (r) denote the subset of Mp (r)

whose members have eigenvalues with non-positive real parts. When p = 1, M−
p (p) is

simply the non-positive half-line and the test based on LRT

(
M−

p (p)
)
therefore reduces

to the one-sided Dickey-Fuller t-test. For any p, imposing the restriction C ∈ M−
p (p)

is equivalent to imposing a nonpositivity restriction on the real parts of the eigenvalues
of Π. Doing so also when p > 1 can be motivated as follows. On the one hand, if the
characteristic polynomial A (z) = Ip − (Ip + Π) z satisfies the well known condition that
|z| > 1 or z = 1 whenever |A (z)| = 0 (e.g., Johansen (1995, Assumption 1)), then the
non-zero eigenvalues of Π have non-positive real part. On the other hand, and partially
conversely, the set of matrices Π satisfying Johansen (1995, Assumption 1) is approximated
(in the sense of Chernoff (1954, Definition 2)) by the closed coneM−

p (p) consisting of those
elements of Rp×p whose eigenvalues have non-positive real parts.5 The latter approximation
property implies that under (2) , imposing Johansen (1995, Assumption 1) is (asymptotically)
equivalent to imposing C ∈M−

p (p) . In particular, we can obtain “sign-restricted”versions of
the maximum eigenvalue and trace statistics by setting C equal toM−

p (1) and C =M−
p (p) ,

respectively.
The following result characterizes the large sample properties of LRT (C) under the as-

sumption that C is a closed cone. As demonstrated by the examples just given, the assump-
tion that C is a (closed) cone is without loss of relevance in the sense that the cases of main
interest satisfy this restriction. Moreover, the assumption that C is a cone seems natural
insofar as it ensures that the implied maintained hypothesis Π ∈ ΠT (C) on Π is T -invariant
in the sense that ΠT (C) does not depend on T .6

Theorem 1. Suppose {yt} is generated by (1) and (2) , with C held fixed as T → ∞. If
C ⊆Rp×p is a closed cone, then LRT (C)→d maxC̄∈C Λp,C

(
C̄
)
, where

Λp,C

(
C̄
)

= tr

[
C̄

∫ 1

0

WC (u) dWC (u)′ − 1

2
C̄ ′C̄

∫ 1

0

WC (u)WC (u)′ du

]
,

WC (u) =
∫ u

0
exp (C (u− s)) dW (s) , and W (·) is a p-dimensional Wiener process.

2.2. Deterministics. As an initial generalization of the model (1) , suppose

yt = µ′dt + vt, ∆vt = Πvt−1 + εt, (4)

where dt = 1 or dt = (1, t)′ , µ is an unknown parameter (of conformable dimension), v0 = 0,
and εt ∼ i.i.d. N (0, Ip) . This model differs from (1) only by accommodating deterministics.
Under (2) , the model gives rise to a log likelihood function that can be expressed in terms
C and µ as

LdT (C, µ) = −1

2

T∑
t=1

‖YTt (C)−DTt (C) vec (µ)‖2 ,

5In other words,M−p (p) is the tangent cone (e.g., Drton (2009, Definition 2.3)) at the point Π = 0 of the
set of matrices Π satisfying Johansen (1995, Assumption 1).

6Proceeding as in the proof of Theorem 1 it can be shown that if C is a set whose closure, cl (C) , contains
zero, then LRT (C) equals maxC̄∈cl(C) LT

(
C̄
)
− LT (0) and has an asymptotic representation of the form

maxC̄∈cl(C) Λp,C
(
C̄
)
. Therefore, the properties of LRT (C) depend on C only through its closure and no

generality is lost by assuming that C is closed.
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where, setting y0 = 0 and d0 = 0, YTt (C) = ∆yt − ΠT (C) yt−1 and DTt (C) = Ip ⊗ ∆d′t −
ΠT (C)⊗ d′t−1.

7

In the presence of the nuisance parameter µ, a likelihood ratio statistic for testing the
null hypothesis C = 0 against the alternative C ∈ C\ {0} is given by

LRd
T (C) = supC̄∈C,µ L

d
T

(
C̄, µ

)
−maxµ L

d
T (0, µ) .

This statistic can be expressed in semi-closed form as

LRd
T (C) = supC̄∈C LdT

(
C̄
)
− LdT (0) ,

where the profile log likelihood LdT (C) = maxµ L
d
T (C, µ) is given by

LdT (C) = −1

2
QY Y,T (C) +

1

2
QY D,T (C)QDD,T (C)−1QDY,T (C) ,

with

QY Y,T (C) =
T∑
t=1

YTt (C)′ YTt (C) ,

QY D,T (C) =
T∑
t=1

YTt (C)′DTt (C) = QDY,T (C)′ ,

QDD,T (C) =
T∑
t=1

DTt (C)′DTt (C) .

Unlike the zero-mean case considered in Section 2.1, the statistic LRd
T (C) does not admit

a closed form expression even when C is of the formMp (r) . Because this computational nui-
sance can be avoided by dropping the “t = 1”contribution from the sum defining LdT (C, µ) ,
it is perhaps tempting to do so. On the other hand, it is by now well understood that likeli-
hood ratio ratio tests constructed from the resulting conditional (on y1) likelihood function
have unnecessarily low power in models with deterministics (e.g., Xiao and Phillips (1999),
Hubrich, Lütkepohl, and Saikkonen (2001), and the references therein). The formulation
adopted here, which retains the “t = 1”contribution in the sum defining LdT (C, µ) , is in-
spired by Jansson and Nielsen (2011), where an analogous formulation was shown to provide
an “automatic”way of avoiding the aforementioned power loss in the scalar case (i.e., when
p = 1) .
In the scalar case studied by Jansson and Nielsen (2011), the local-to-unity asymptotic

distribution of the likelihood ratio statistic accommodating deterministics was found to be
identical that of its no deterministic counterparts in the constant mean case (i.e., when
dt = 1), but not in the linear trend case (i.e., when dt = (1, t)′). The following multivariate
result shares these qualitative features.

7The observed data are (y1, . . . , yT ); setting y0 = 0 and d0 = 0 is a notational convention that allows
the first likelihood contribution − 1

2 ‖y1 − µ′d1‖2 to be expressed in the same way as the other terms in the
summation.
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Theorem 2. Suppose {yt} is generated by (4) and (2) , with C held fixed as T →∞. More-
over, suppose C ⊆Rp×p is a closed cone.

(a) If dt = 1, then LRd
T (C)→d maxC̄∈C Λp,C

(
C̄
)
, where Λp,C is defined in Theorem 1.

(b) If dt = (1, t)′ , then LRd
T (C) →d maxC̄∈C Λτ

p,C

(
C̄
)
, where, with C̄s = 1

2

(
C̄ + C̄ ′

)
and

C̄a = 1
2

(
C̄ − C̄ ′

)
denoting the symmetric and antisymmetric parts of C̄,

Λτ
p,C

(
C̄
)

= Λp,C

(
C̄
)

+
1

2
λp,C

(
C̄
)′(

Ip − C̄s +
1

3
C̄ ′C̄

)−1

λp,C
(
C̄
)
− 1

2
λp,C (0)′ λp,C (0) ,

λp,C
(
C̄
)

=
(
Ip − C̄s

)
WC (1)− C̄a

(∫ 1

0

WC (u) du−
∫ 1

0

udWC (u)

)
+ C̄ ′C̄

∫ 1

0

uWC (u) du.

Theorem 2(a) implies in particular that in the constant mean case, the local asymptotic
power of the test based on LRd

T (Mp (p)) coincides with that of the no-deterministics trace
test. This property is shared by the (trace) test proposed by Saikkonen and Luukkonen
(1997), which was found by Hubrich, Lütkepohl, and Saikkonen (2001) to be superior to its
main rivals, notably the tests proposed by Johansen (1991). A further implication of Theorem
2(a) is that the relative merits of LRd

T (Mp (p)) and LRd
T

(
M−

p (p)
)
are the same as those

of their no deterministics counterparts analyzed in Section 2.1, so also in the constant mean
case positive (albeit slight) power gains can be achieved by imposing “sign”restrictions. In
Section 3 we analyze the asymptotic local power functions of our newly proposed tests and
compare with those of the Johansen (1991) and Saikkonen and Luukkonen (1997) tests.
Our interpretation of the comprehensive simulation evidence reported in Hubrich, Lütke-

pohl, and Saikkonen (2001) is that in the linear trend case, the most powerful currently
available tests are those of Lütkepohl and Saikkonen (2000) and Saikkonen and Lütkepohl
(2000). Under the assumptions of Theorem 2(b), the so-called GLS (trace) statistics pro-
posed in these papers all have asymptotic representations of the form

tr

[(∫ 1

0

W̃C (u) dW̃C (u)′
)′(∫ 1

0

W̃C (u) W̃C (u)′ du

)−1(∫ 1

0

W̃C (u) dW̃C (u)′
)′]

,

where W̃C (u) = WC(u)− uWC (1) .
For the purposes of comparing this representation (as well as certain representations that

have arisen in the univariate case) with that obtained in Theorem 2(b), it turns out to be
convenient to define

ΛGLS
p,C

(
C̄; C̄∗

)
= tr

[
C̄

∫ 1

0

W̃C,C̄∗ (u) dW̃C,C̄∗ (u)′ − 1

2
C̄ ′C̄

∫ 1

0

W̃C,C̄∗ (u) W̃C,C̄∗ (u)′ du

−1

2
W̃C,C̄∗ (1) W̃C,C̄∗ (1)′

]
,

where, letting DC̄∗(u) = Ip − C̄∗u, the process

W̃C,C̄∗ (u) = WC(u)− u
[∫ 1

0

DC̄∗(s)
′DC̄∗(s)ds

]−1 ∫ 1

0

DC̄∗(s)
′ [dWC(s)− C̄∗WC(s)ds

]
,
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can be interpreted as a GLS-detrended Ornstein-Uhlenbeck process (the multivariate version
of the process Vc(t, c̄) defined by Elliott, Rothenberg, and Stock (1996, Section 2.3)).
Using this notation, the asymptotic representation of one half times the GLS trace statis-

tics of Lütkepohl and Saikkonen (2000) and Saikkonen and Lütkepohl (2000) can be written
as LRGLS

p,C (Mp (p) ; 0) , where LRGLS
p,C

(
C; C̄GLS

)
= maxC̄∈C ΛGLS

p,C

(
C̄; C̄GLS

)
.8 In the univari-

ate case, a test with the same asymptotic properties was proposed by Schmidt and Lee
(1991). Another class of (univariate) tests whose large sample properties can be character-
ized using representations of the same form are the DF-GLS statistics of Elliott, Rothenberg,
and Stock (1996), which can be shown to correspond to LRGLS

1,C

(
R−; C̄ERS

)
, where C̄ERS is

a user-chosen constant set equal to −13.5 by Elliott, Rothenberg, and Stock (1996). Calcu-
lations outlined in the proof of Theorem 2(b) show that our test statistics admit asymptotic
representations of the formmaxC̄∈C ΛGLS

p,C

(
C̄; C̄

)
. As a consequence, our test statistics cannot

be interpreted as multivariate generalizations of the DF-GLS statistics of Elliott, Rothen-
berg, and Stock (1996).

2.3. Reduced Rank Hypotheses. Next, we consider the problem of testing more gen-
eral reduced rank hypotheses on the matrix Π in the model (4) . For the purposes of devel-
oping tests of the hypothesis that Π is of rank r0 (for some r0 < p), it turns out to be useful
to consider the case where Π is parameterized as

Π = ΠT (C; r0, α, α⊥, β) = αβ′ + T−1α⊥Cα
′
⊥, (5)

where α ∈ Rp×r0 , α⊥ ∈ Rp×q, and β ∈ Rp×r0 with (α, α⊥) orthogonal, the eigenvalues of
Ir0 + α′β are less than one in absolute value, and C ∈ Rq×q is an unknown parameter of
interest. Here and throughout q = p−r0. The eigenvalue assumption implies that the matrix
(β, α⊥) is non-singular, so that the matrix Π is unrestricted by this reparametrization.
In (5) , Π has rank r0 if and only if C = 0. Conversely, any Π ∈ Rp×p of rank r0 can be

expressed as αβ′ for some (semi-orthogonal) α ∈ Rp×r0 and some β ∈ Rp×r0 of full column
rank. Moreover, it turns out that likelihood ratio statistics corresponding to hypotheses
concerning C in (5) depend on (α, α⊥, β) in a suffi ciently nice way that it is of relevance to
proceed “as if”these parameters were known. For our purposes, a further attraction of the
specification (5) is that restrictions on Π implied by cointegration are “sign”restrictions on
C of the exact same form as those discussed earlier.
Assuming (counterfactually) that (α, α⊥, β) is known, a likelihood ratio statistic for test-

8It can be shown that if the assumptions of Theorem 2(b) hold, then

LRGLST

(
C; C̄GLS

)
→d LRGLSp,C

(
C; C̄GLS

)
,

where letting µ̂T
(
C̄GLS

)
= arg maxµ L

d
T

(
C̄GLS , µ

)
,

LRGLST

(
C; C̄GLS

)
= supC̄∈C L

d
T

(
C̄, µ̂T

(
C̄GLS

))
− LdT

(
0, µ̂T

(
C̄GLS

))
.

As a consequence, every limiting representation (indexed by C and C̄GLS) of the form LRGLSp,C

(
C; C̄GLS

)
is achievable. It is beyond the scope of this paper to attempt to isolate “optimal”choices of C and C̄GLS .
Instead, our aim is to clarify the relationship between our tests and certain tests already in the literature.
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ing the null hypothesis C = 0 against the alternative C ∈ C\ {0} is given by

LRd
T (C; r0, α⊥) = supC̄∈C,µ L

d
T

(
C̄, µ; r0, α, α⊥, β

)
−maxµ L

d
T (0, µ; r0, α, α⊥, β) ,

where

LdT (C, µ; r0, α, α⊥, β) = −1

2

T∑
t=1

‖YTt (C; r0, α, α⊥, β)−DTt (C; r0, α, α⊥, β) vec (µ)‖2 ,

with y0 = 0, d0 = 0, and

YTt (C; r0, α, α⊥, β) = ∆yt − ΠT (C; r0, α, α⊥, β) yt−1,

DTt (C; r0, α, α⊥, β) = Ip ⊗∆d′t − ΠT (C; r0, α, α⊥, β)⊗ d′t−1.

As the notation suggests, the likelihood ratio statistic depends on (α, α⊥, β) only through
α⊥. Indeed, as shown in the proof of Theorem 3 the statistic LRd

T (C; r0, α⊥) is simply the
statistic LRd

T (C) of the previous subsection applied to {α′⊥yt} rather than {yt} . As a conse-
quence, one would expect the large sample distributions of LRd

T (C; r0, α⊥) to be of the same
form as those obtained in Theorem 2. That conjecture is confirmed by the following result,
which furthermore gives a simple condition (on the estimator α̂⊥,T ) under which a “plug-in”
statistic of form LRd

T (C; r0, α̂⊥,T ) is asymptotically equivalent to LRd
T (C; r0, α⊥) .

Theorem 3. Suppose {yt} is generated by (4) and (5) , with ((α, α⊥, β) and) C held fixed
as T →∞. Moreover, suppose C ⊆Rp×p is a closed cone and suppose α̂⊥,T →p α⊥.

(a) If dt = 1, then LRd
T (C; r0, α̂⊥,T ) →d maxC̄∈C Λq,C

(
C̄
)
, where Λq,C is defined in The-

orem 1.

(b) If dt = (1, t)′ , then LRd
T (C; r0, α̂⊥,T ) →d maxC̄∈C Λτ

q,C

(
C̄
)
, where Λτ

q,C is defined in
Theorem 2.

The consistency requirement on α̂⊥,T is mild. LetNL :Mp (r0)\Mp (r0 − 1)→ Rp×q be a
function which returns a semi-orthogonal matrix spanning the left null space of its argument,
i.e. satisfies NL(M)′NL(M) = Iq and NL(M)′M = 0 for every M ∈ Mp (r0) \Mp (r0 − 1) ,
the set of p× p matrices of rank r0. Under the other assumptions of Theorem 3, the matrix
Π0 = αβ′ is of rank r0 and is consistently estimable, as is its left null space. The latter is
spanned by the columns of α⊥, so an estimator α̂⊥,T of the form α̂⊥,T = NL(Π̂0,T ) will be
consistent provided Π̂0,T →p Π0 and provided the function NL (·) is chosen to be continuous
in its argument.

2.4. Serial Correlation and Unknown Error Distribution. As a final generalization
of the model (4) we assume that the stochastic part of the model is a VAR of order k + 1,
which we write in error correction form. Thus, suppose

yt = µ′dt + vt, [Γ (L) (1− L)− ΠL] vt = εt, (6)

where dt = 1 or dt = (1, t)′ , µ is an unknown parameter, Γ (L) = Ip − Γ1L − . . . − ΓkL
k

is a matrix lag polynomial with |Γ (z) (1− z)− Πz| 6= 0 for |z| < 1, the initial condition is
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max (‖v0‖ , . . . , ‖v−k‖) = op(
√
T ), and the εt form a conditionally homoskedastic martingale

difference sequence with unknown (full rank) covariance matrix Σ and suptE ‖εt‖
2+δ < ∞

for some δ > 0.
To develop tests of the hypothesis that Π is of rank r0, it once again proves convenient

to employ a very particular parameterization of Π. Specifically, it turns out to be useful to
consider the case where Π is parameterized as

Π = ΠT (C; r0, θ) = αβ′ + T−1Σα⊥Cα
′
⊥Γ(1), (7)

where α ∈ Rp×r0 , α⊥ ∈ Rp×q, and β ∈ Rp×r0 with
(
Σ−1/2α,Σ1/2α⊥

)
orthogonal, and

where |Γ (z) (1− z)− αβ′z| = 0 has exactly q = p − r0 roots equal to one and all other
roots outside the unit circle, C ∈ Rq×q is an unknown parameter of interest, and θ =
(α, α⊥, β,Σ,Γ1, . . . ,Γk) contains all nuisance parameters other than µ.
The Gaussian quasi-log likelihood function corresponding to the model with u0 = . . . =

u−k = 0 and with θ known can be expressed, up to a constant, as

LdT (C, µ; r0, θ) = −1

2

T∑
t=1

∥∥Σ−1/2 [YTt (C; r0, θ)−DTt (C; r0, θ) vec (µ)]
∥∥2
,

where, setting y0 = . . . = y−k = 0 and d0 = . . . = d−k = 0,

YTt (C; r0, θ) = Γ (L) ∆yt − ΠT (C; r0, θ) yt−1

and
DTt (C; r0, θ) = Γ (L)⊗∆d′t − ΠT (C; r0, θ)⊗ d′t−1.

Replacing θ by an estimator θ̂T we are led to consider quasi-likelihood ratio type statistics
of the form

L̂R
d

T (C; r0) = supC̄∈C,µ L
d
T

(
C̄, µ; r0, θ̂T

)
−maxµ L

d
T

(
0, µ; r0, θ̂T

)
.

Theorem 4. Suppose {yt} is generated by (6) and (7) , with (θ and) C held fixed as T →∞.
Moreover, suppose C ⊆Rp×p is a closed cone and suppose θ̂T →p θ.

(a) If dt = 1, then L̂R
d

T (C; r0) →d maxC̄∈C Λq,C

(
C̄
)
, where Λq,C is defined in Theorem

1.

(b) If dt = (1, t)′ , then L̂R
d

T (C; r0) →d maxC̄∈C Λτ
q,C

(
C̄
)
, where Λτ

q,C is defined in Theo-
rem 2.

An obvious choice for the consistent estimator θ̂T would be the maximizer of the con-
ditional quasi-likelihood, obtained as the density of (yk+2, . . . , yT ) conditional on starting
values (y1, . . . , yk+1). The corresponding model under the null hypothesis may be expressed
as

∆yt = αβ′yt−1 + Γ1∆yt−1 + . . .+ Γk∆yt−k + Φdt + εt, t = k + 2, . . . , T,
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where Φdt = Γ(L)µ′∆dt−αβ′µ′dt−1. As analyzed in Johansen (1995), conditional likelihood
estimation of the parameters of the model in case (a) leads to reduced rank regression applied
to the system

∆yt = α(β′, ρ0)(y′t−1, 1)′ + Γ1∆yt−1 + . . .+ Γk∆yt−k + εt,

where ρ0 = −β′µ′; in case (b), reduced rank regression is applied to

∆yt = α(β′, ρ1)(y′t−1, t)
′ + Γ1∆yt−1 + . . .+ Γk∆yt−k + Φ1 + εt,

where ρ1 = −β′µ′(0, 1)′ and Φ1 is unrestricted. Johansen (1995) shows that the resulting
estimator of θ is consistent under the null hypothesis, and this result can be extended to
local alternatives of the type (7).

3. Critical Values and Local Power
To enable application of the newly proposed tests in practice, and to assess the magnitude
of the power gains achievable by using the full likelihood and imposing the “sign”restriction
discussed above, we used the results in Theorems 1 and 2 to compute asymptotic critical
values and local power functions of the tests for C =Mq (q) and C =M−

q (q).
The results in this section are based on simulations conducted in Ox, see Doornik (2007).

The “sign” restriction was imposed using the MaxSQP sequential quadratic programming
optimization routine, while the results without the “sign” restriction were obtained using
the MaxBFGS routine. Replications where the maxSQP routine did not converge have not been
discarded, in order to avoid the possibility that the power of the “sign-restricted”tests might
be biased upward due to selectivity of convergent replications.
Next we study the power of the tests for the univariate (q = 1) and bivariate (q = 2)

cases. In the univariate case, the local power is simply plotted against ` = −c, where ` ranges
from 0 to 25 in the case of a constant mean, and from 0 to 50 in the case of a linear trend.
In the bivariate case, we consider only cases with rank(C) = 1, and adopt the following
variation of the parametrization proposed by Hubrich, Lütkepohl, and Saikkonen (2001), see
also Johansen (1995, Chapter 14),

C = `

[
−
√

1− ρ2 0
ρ 0

]
, ` ≥ 0, ρ ∈ [0, 1].

Here ` = ‖C‖ and ρ determines angle between a and b⊥, where C = ab′. The parametrization
has been chosen such that local power increases monotonically in both ` and ρ. Note that
the value ρ = 1 corresponds to the process

WC(u) = W (u) +

[
0 0
` 0

] ∫ u

0

W (s)ds,

which is an I(2) process in continuous time. Because the test is proposed to detect stationary
linear combinations in yt, local power against alternatives with ρ = 1 is not our main
interest, but these cases are included in the results below. In particular, we consider ρ ∈
{0, 0.5, 0.75, 1} and ` ∈ [0, 50].
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Table 1: Simulated quantiles of the distributions of maxC̄∈C Λq,0(C̄) and maxC̄∈C Λτ
q,0(C̄)

C =Mq (q) C =M−q (q)

q 90% 95% 99% 99.9% 90% 95% 99% 99.9% NC
Panel A: maxC̄∈C Λq,0

(
C̄
)

1 1.477 2.054 3.486 5.513 1.294 1.861 3.271 5.262 0.0%
2 5.228 6.135 8.104 10.55 5.032 5.925 7.825 10.31 0.6%
3 10.86 12.11 14.73 17.99 10.67 11.90 14.50 17.85 1.6%
4 18.45 20.01 23.16 27.28 18.27 19.82 22.94 27.17 2.9%
5 27.99 29.88 33.73 38.18 27.81 29.68 33.51 37.94 3.9%
6 39.49 41.66 45.97 51.34 39.32 41.49 45.81 51.12 4.4%

Panel B: maxC̄∈C Λτq,0
(
C̄
)

1 3.203 3.974 5.665 7.999 3.203 3.974 5.665 7.999 0.0%
2 7.809 8.861 11.05 13.74 7.802 8.848 11.03 13.74 0.1%
3 14.33 15.68 18.54 22.27 14.31 15.65 18.49 22.20 0.2%
4 22.71 24.35 27.70 31.67 22.67 24.32 27.65 31.54 0.4%
5 33.05 35.01 38.82 43.50 33.01 34.96 38.79 43.44 0.7%
6 45.24 47.47 51.87 57.60 45.19 47.40 51.82 57.51 1.0%

Note: The table presents simulated quantiles, where Wiener processes are approximated by 1000 discrete

steps with standard Gaussian innovations. The column labeled NC contains the percentage of the repli-

cations where the numerical optimization procedure did not converge when C = M−q (q). No replications

had convergence problems for the case with C = Mq (q). All entries are based on 100, 000 Monte Carlo

replications.

For the case of a constant mean, we compare the two likelihood ratio tests, indicated by
LR(M) and LR(M−), with the standard Johansen trace test for an unknown mean (i.e.,
with a restricted constant), indicated by Trace. We use the power function of the trace
test as the (only) benchmark because the trace test seems to be the most popular test in
applications and because the local power of the trace test was found by Lütkepohl, Saikkonen,
and Trenkler (2001) to be very similar to that of its closest rival, the maximum eigenvalue
test (i.e., the test corresponding to C =Mp (1)). Note that the power of the likelihood ratio
test with C = Mq (q) is in fact identical to the power of Johansen’s trace test for a known
mean (equal to zero).
In Figures 1 and 2 we display the asymptotic local power functions for the constant

mean case. It is clear that imposing the sign restriction does lead to a local power gain in
the univariate case, but appears to make very little difference with q = 2. More importantly,
both versions of the LR test have much higher asymptotic local power than the trace test,
both in the univariate and in the bivariate case, although the power difference decreases as
ρ approaches the I(2) boundary ρ = 1.
Figures 3 and 4 display the asymptotic local power functions for the linear trend case.

In this case we have also included the asymptotic local power function of the tests proposed
by Lütkepohl and Saikkonen (2000) and Saikkonen and Lütkepohl (2000), indicated by SL.
Now the gains from imposing the “sign” restriction vanish entirely. The power difference
between the likelihood ratio tests and the trace test are comparable to the constant mean
case. The likelihood ratio tests also dominate the SL test in local power, especially for local
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Figure 1: Asymptotic local power functions of cointegration tests, constant mean, q = 1.
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Note: The asymptotic local power functions (5% level) against ` are generated using 100,000
Monte Carlo replications, where Wiener processes are approximated by 1000 discrete steps
with standard Gaussian innovations.

alternatives relatively far from the null hypothesis (i.e., for large `), where the local power
of SL appears to approach one only very slowly.

4. Discussion and Conclusions
In this paper, we have suggested improved tests for cointegration rank in the vector autore-
gressive (VAR) model and developed relevant asymptotic distribution theory and local power
results. The tests are (quasi-)likelihood ratio tests based on a Gaussian likelihood, but of
course the asymptotic results apply more generally. The power gains relative to existing tests
are due to two factors. First, instead of basing our tests on the conditional (with respect to
the initial observations) likelihood, we follow the recent unit root literature and base our tests
on the full likelihood as in, e.g., Elliott, Rothenberg, and Stock (1996). Secondly, our tests
incorporate a “sign”restriction which generalizes the one-sided unit root test. We show that
the asymptotic local power of the proposed tests dominates that of existing cointegration
rank tests.
Computationally, the new tests require numerical optimization; for the tests that do

not impose the sign restriction, this numerical optimization is fast and does not have any
convergence problems. In fact, it is possible to devise a convenient switching algorithm for
optimizing the likelihood function in such cases.
To deal with the nuisance parameters, we use a plug-in approach for those parameters

that are irrelevant in the asymptotic distributions (and asymptotic local power). On the
other hand, the likelihood is maximized with respect to those parameters that are important
for the asymptotic distributions and power. Existing tests based on GLS detrending, e.g.
Xiao and Phillips (1999), do the opposite and use a plug-in approach for the asymptotically
relevant parameters and maximize the likelihood with respect to the asymptotically irrelevant
parameters.
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Figure 2: Asymptotic local power functions of cointegration tests, constant mean, q = 2.
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Note: The asymptotic local power functions (5% level) against ` are generated using 100,000
Monte Carlo replications, where Wiener processes are approximated by 1000 discrete steps
with standard Gaussian innovations.

By proposing cointegration rank tests with power superior to those of existing tests, this
paper has demonstrated by example that these existing tests are suboptimal in terms of local
asymptotic power. In the univariate case, our tests reduce to those of Jansson and Nielsen
(2011) and were shown there to be “nearly effi cient”(in the sense of Elliott, Rothenberg, and
Stock (1996)). Generalizing the optimality theory of Elliott, Rothenberg, and Stock (1996)
to multivariate settings is beyond the scope of this paper, however, so it remains an open
question whether the tests developed herein themselves enjoy any optimality properties.

5. Proofs
5.1. Proof of Theorem 1. We use a method of proof similar to that of Jansson and
Nielsen (2011). Expanding LT (C) around C = 0, we have

LT (C)− LT (0) = F (C, ST , HT ) = tr

(
CST −

1

2
C ′CHT

)
,

where

(ST , HT ) =

(
1

T

T∑
t=2

yt−1∆y′t,
1

T 2

T∑
t=2

yt−1y
′
t−1

)
.

Therefore, LRT (C) can be represented as LRT (C) = maxC̄∈C F
(
C̄, ST , HT

)
.

Under the assumptions of Theorem 1 it follows from Phillips (1988) that

(ST , HT )→d (SC ,HC) =

(∫ 1

0

WC (u) dWC (u)′ ,

∫ 1

0

WC (u)WC (u)′ du

)
,
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Figure 3: Asymptotic local power functions of cointegration tests, linear trend, q = 1.
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Note: The asymptotic local power functions (5% level) against ` are generated using 100,000
Monte Carlo replications, where Wiener processes are approximated by 1000 discrete steps
with standard Gaussian innovations.

implying in particular that F
(
C̄, ST , HT

)
→d F

(
C̄,SC ,HC

)
= ΛC

(
C̄
)
for every C̄ ∈ C.

Using this convergence result and the fact that the set X of pairs (S,H) of p × p matrices
for which H is symmetric and positive definite satisfies Pr [(SC ,HC) ∈ X] = 1, Theorem
1 will follow from the continuous mapping theorem if it can be shown that the functional
maxC̄∈C F

(
C̄, ·
)
is continuous on X.

Using simple bounds (and the fact that H0 is positive definite whenever (S0, H0) ∈ X),
it can be shown that any (S0, H0) ∈ X admits a finite constant K and an open set X0 ⊆ X
containing (S0, H0) such that

sup(S,H)∈X0,‖C̄‖>K F
(
C̄, S,H

)
≤ 0.

Specifically, the asserted property of F (·) follows from the fact that

limK→∞ sup‖C̄‖>K
∥∥C̄∥∥−2 ∣∣F (C̄, S,H)− F ∗ (C̄,H)∣∣→ 0,

where F ∗ (C,H) = −1
2

tr (C ′CH) , the convergence is uniform (in (S,H)) on compacta, and

limK→∞ sup‖C̄‖>K
∥∥C̄∥∥−2

F ∗
(
C̄, ·
)
is negative and continuous on the set of positive definite

matrices.
Therefore, because F (0, S,H) = 0 and because C is closed and contains the zero matrix,

it holds for any (S,H) ∈ X0 that

maxC̄∈C F
(
C̄, S,H

)
= maxC̄∈C,‖C̄‖≤K F

(
C̄, S,H

)
.

Because
{
C̄ ∈ C :

∣∣∣∣C̄∣∣∣∣ ≤ K
}
is compact, the theorem of the maximum (e.g., Stokey and

Lucas (1989, Theorem 3.6)) can be used to show that maxC̄∈C F
(
C̄, ·
)
is continuous at

(S0, H0) .
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Figure 4: Asymptotic local power functions of cointegration tests, linear trend, q = 2.
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Note: The asymptotic local power functions (5% level) against ` are generated using 100,000
Monte Carlo replications, where Wiener processes are approximated by 1000 discrete steps
with standard Gaussian innovations.

5.2. Proof of Theorem 2. Because the profile log likelihood function LdT (·) is invariant
under transformations of the form yt → yt + m′dt we can assume without loss of generality
that µ = 0, so that vt = yt in the proof. Moreover, the proofs of parts (a) and (b) are very
similar, so to conserve space we omit the details for part (a).
Proceeding as in the proof of Theorem 1, it can be shown that LdT

(
C̄
)
− LdT (0) can be

written as F d
(
C̄,Xd

T

)
for some Xd

T satisfying a convergence property of the form Xd
T →d

X d
C and some function F d (·) enjoying the property that the functional maxC̄∈C F

d
(
C̄, ·
)

is continuous on a set Xd satisfying Pr
[
X d
C ∈ Xd

]
= 1. By implication, maxC̄∈C LdT

(
C̄
)
−

LdT (0) →d maxC̄∈C F
d
(
C̄,XC

)
, so it suffi ces to show that Λτ

p,C

(
C̄
)
is the pointwise (in C̄)

weak limit of LdT
(
C̄
)
− LdT (0) .

To do so, note that

Λτ
p,C

(
C̄
)

= Λp,C

(
C̄
)
+

1

2
QDY,T

(
C̄
)′
QDD,T

(
C̄
)−1

QDY,T

(
C̄
)
−1

2
QDY,T (0)′QDD,T (0)−1QDY,T (0)

and let d0 = 0 and y0 = 0 and define ΨT = Ip⊗diag
(

1, 1/
√
T
)
and d̃Tt = diag

(
1, 1/
√
T
)
dt.
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For any C̄ ∈ C, we have

ΨTQDD,T

(
C̄
)

ΨT = Ip ⊗
(

T∑
t=1

∆d̃Tt∆d̃
′
Tt

)
+
(
C̄ ′C̄

)
⊗
(

1

T 2

T∑
t=1

d̃T,t−1d̃
′
T,t−1

)

− C̄ ′ ⊗
(

1

T

T∑
t=1

d̃T,t−1∆d̃′Tt

)
− C̄ ⊗

(
1

T

T∑
t=1

∆d̃Ttd̃
′
T,t−1

)

→ Ip ⊗
(

1 0
0 1

)
− C̄s ⊗

(
0 0
0 1

)
+
(
C̄ ′C̄

)
⊗
(

0 0
0 1/3

)
= Ip ⊗

(
1 0
0 0

)
+

(
Ip − C̄s +

1

3
C̄ ′C̄

)
⊗
(

0 0
0 1

)
=

[
Ip ⊗

(
1 0
0 0

)
+

(
Ip − C̄s +

1

3
C̄ ′C̄

)−1

⊗
(

0 0
0 1

)]−1

,

where the last equality can be verified directly by using the so-called mixed-product property
of the Kronecker product.
Next, using Phillips (1988) and the identity

∫ 1

0
WC (u) du = WC (1)−

∫ 1

0
udWC (u) ,

ΨTQDY,T

(
C̄
)

= vec

(
T∑
t=1

∆d̃Tt∆v
′
t

)
+ vec

[(
1

T 2

T∑
t=1

d̃T,t−1v
′
t−1

)
C̄ ′C̄

]

− vec

[(
1

T

T∑
t=1

∆d̃Ttv
′
t−1

)
C̄ ′

]
− vec

[(
1

T

T∑
t=1

d̃T,t−1∆v′t

)
C̄

]

→d vec

(
Y ′

WC (1)′

)
+ vec

[(
0∫ 1

0
uWC (u)′ du

)
C̄ ′C̄

]
− vec

[(
0

WC (1)′ −
∫ 1

0
udWC (u)′

)
C̄ ′
]
− vec

[(
0∫ 1

0
udWC (u)′

)
C̄

]
= vec

(
Y ′

λC
(
C̄
)′ ) ,

where Y is a random variable independent of WC (·) . Combining these results with that
obtained in the proof of Theorem 1, the desired conclusion follows.
The definition DC̄(u) = Ip − C̄u immediately implies∫ 1

0

DC̄(u)′DC̄(u)du = Ip − C̄s +
1

3
C̄ ′C̄.

Next, using C̄s = C̄ − C̄a and the identity
∫ 1

0
WC (u) du = WC (1)−

∫ 1

0
udWC (u) , straight-

forward algebra shows that λC(C̄) may be expressed as

λp,C(C̄) =

∫ 1

0

DC̄(u)′
[
dWC(u)− C̄WC(u)du

]
.
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This leads to

Λτ
p,C(C̄)− Λp,C(C̄) =

1

2
λp,C(C̄)′

(∫ 1

0

DC̄(u)′DC̄(u)du

)−1

λp,C(C̄)− 1

2
WC(1)′WC(1)

=
1

2
bC(C̄)′

(∫ 1

0

DC̄(u)′DC̄(u)du

)
bC(C̄)− 1

2
WC(1)′WC(1),

where

bC(C̄) =

(∫ 1

0

DC̄(u)′DC̄(u)du

)−1 ∫ 1

0

DC̄(u)′
[
dWC(u)− C̄WC(u)du

]
,

is the GLS estimated slope parameter in W̃C,C̄(r) = WC(u) − ubC(C̄), i.e. the estimated
coeffi cient from continuous-time GLS regression of WC(u) on u.
From this expression, it can be shown (after substantial rearrangement of terms) that

Λτ
p,C(C̄) = ΛGLS

p,C

(
C̄; C̄

)
, implying in particular that LRd

T (C) →d ΛGLS
p,C

(
C̄; C̄

)
, as claimed

in the main text.

5.3. Proof of Theorem 3. Because (α, α⊥) is orthogonal and replacing yt by y∗t =(
y∗′1,t, y

∗′
2,t

)′
= (y′tα, y

′
tα⊥)′ if necessary, we can assume without loss of generality that (α, α⊥) =

Ip. In that special case, the implied model for y2t = α′⊥yt is of the form (4) with Π = T−1C ∈
Rq×q (as in (2)). Moreover, it follows from simple algebra that, for any C̄,

maxµ L
d
T

(
C̄, µ; r0, α, α⊥, β

)
−maxµ L

d
T (0, µ; r0, α, α⊥, β) = LdT

(
C̄; r0

)
− LdT (0; r0) ,

where LdT (C; r0) is the statistic LdT (C) of Section 2.2 computed using y2t rather yt; that is,

LdT (C; r0) = −1

2
QY Y,T (C; r0) +

1

2
QY D,T (C; r0)QDD,T (C; r0)−1QDY,T (C; r0) , (8)

where, setting y2,0 = 0 and d0 = 0 and defining YTt (C; r0) = ∆y2t−T−1Cy2,t−1 andDTt (C) =
Ip−r0 ⊗∆d′t − T−1C ⊗ d′t−1,

QY Y,T (C; r0) =
T∑
t=1

YTt (C; r0)′ YTt (C; r0) ,

QY D,T (C; r0) =

T∑
t=1

YTt (C; r0)′DTt (C; r0) = QDY,T (C; r0)′ ,

QDD,T (C; r0) =

T∑
t=1

DTt (C; r0)′DTt (C; r0) .

Theorem 3 therefore follows from Theorem 2 in the special case where α̂⊥,T = α⊥. Since
the statistics of interest are smooth functionals of the process T−1/2α̂′⊥,TybT ·c, the more
general result, with α̂⊥,T a consistent estimator of α⊥, follows from the result for α̂⊥,T = α⊥
combined with the fact that

sup0≤u≤1 T
−1/2

∣∣α̂′⊥,TybTuc − α′⊥ybTuc∣∣ = sup0≤u≤1

∣∣(α̂⊥,T − α⊥)′ T−1/2ybTuc
∣∣→p 0,

which holds because α̂⊥,T →p α⊥ and T−1/2ybT ·c is tight.
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5.4. Proof of Theorem 4. First consider the special case where θ̂T = θ. Because
(Σ−1/2α,Σ1/2α⊥) is orthogonal, the matrix (Σ−1α, α⊥) is non-singular. Transforming vt =
yt − µ′dt by this matrix leads to transformed errors ε∗t = (ε∗′1t, ε

∗′
2t)
′ = (ε′tΣ

−1α, ε′tα⊥)
′ with

covariance matrix Ip and the transformed system

α′Σ−1Γ(L)∆vt = α′Σ−1αβ′vt−1 + ε∗1t,

α′⊥Γ(L)∆vt = T−1Cα′⊥Γ(1)vt−1 + ε∗2t.

Because the first equation does not involve the parameter C, and the two disturbances ε∗1t and
ε∗2t are independent, the profile likelihood function is defined only from the second equation.
In other words, analogously to the proof of Theorem 3, we find that for any C̄,

maxµ L
d
T

(
C̄, µ; r0, θ

)
−maxµ L

d
T (0, µ; r0, θ) = LdT

(
C̄; r0

)
− LdT (0; r0) ,

where LdT (C; r0) is defined as in (8), but with YTt(C; r0) now defined as

YTt(C; r0) = α′⊥Γ(L)∆yt − T−1Cα′⊥Γ(1)yt−1.

Define wt = α′⊥Γ(1)vt and w∗t = α′⊥Γ(L)vt. The solution to Exercise 14.1 in Hansen and
Johansen (1998) implies that

T−1/2wbTuc = T−1/2w∗bTuc + op(1)→d WC(u) =

∫ u

0

exp(C(u− s))dW (s),

where W (·) is a (p− r0)-dimensional Wiener process, obtained as the limit in distribution of
T−1/2

∑bT ·c
t=1 α

′
⊥εt. This result is obtained by replacing α1β

′
1 in the notation of Hansen and

Johansen (1998) by Σα⊥Cα
′
⊥Γ(1), so that their “standardized”mean-reversion parameter

ab′ becomes

ab′ = (α′⊥Σα⊥)−1/2α′⊥α1β
′
1β⊥(α′⊥Γ(1)β⊥)−1(α′⊥Σα⊥)1/2 = C.

With ΨT and d̃Tt defined as in the proof of Theorem 2 we then find, analogously to the proof
of that theorem (and again assuming µ = 0 without loss of generality), that

ΨTQDY,T

(
C̄; r0

)
= vec

(
T∑
t=1

∆d̃Tt∆w
∗′
t

)
+ vec

[(
1

T 2

T∑
t=1

d̃T,t−1w
′
t−1

)
C̄ ′C̄

]

− vec

[(
1

T

T∑
t=1

∆d̃Ttw
′
t−1

)
C̄ ′

]
− vec

[(
1

T

T∑
t=1

d̃T,t−1∆w∗′t

)
C̄

]

→d vec

(
Y ′

λC
(
C̄
)′ ) ,

whereas ΨTQDD,T (C̄, r0)ΨT has the same limit as before. This leads to the required result
for the case where θ̂T = θ.
If θ̂T is a consistent estimator, then wt and w∗t in the equation above need to be replaced

by ŵt = α̂′⊥,T Γ̂T (1)yt and ŵ∗t = α̂′⊥,T Γ̂T (L)yt, respectively. As in the proof of Theorem 3,

consistency of θ̂T implies

sup0≤u≤1 T
−1/2

∣∣ŵbTuc − wbTuc∣∣ = sup0≤u≤1

∣∣∣[α̂′⊥,T Γ̂T (1)− α′⊥Γ(1)
]
T−1/2ybTuc

∣∣∣→p 0.
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Furthermore, because

wt = α′⊥Γ(L)yt = α′⊥Γ(1)yt + α⊥Γ∗(L)∆yt = w∗t + α⊥Γ∗(L)∆yt,

where Γ∗(z) = [Γ(z)− Γ(1)]/(1− z), it follows that

sup0≤u≤1 T
−1/2

∣∣w∗bTuc − wbTuc∣∣→p 0,

and analogously we have sup0≤u≤1 T
−1/2

∣∣∣ŵ∗bTuc − ŵbTuc∣∣∣→p 0.
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