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Abstract

We study the limit distribution of partial sums of nonstationary linear process

{Xt, t = 1, . . . , n} with long memory and changing memory parameter dt,n ∈ (0,∞).

Two classes of linear processes are investigated, namely, (I) the class of FARIMA-type

truncated moving averages with time-varying fractional integration parameter and (II)

the class of time-varying fractionally integrated processes introduced in Philippe et

al. (2006, 2008). The cases of fast changing memory parameter (dt,n = dt does not

depend on n) and slowly changing memory parameter (dt,n = d(t/n) for some function

d(τ), τ ∈ [0, 1]) are discussed. In the case of fast changing memory, the limit partial

sums process is a type II fractional Brownian motion (fBm) with the Hurst parameter

equal to the global maximum of (dt) for class (I) processes, and the mean value of (dt)

for class (II) processes. In the case of slowly changing memory, the limit of partial sums

for both classes (I) and (II) is degenerated and “localized” at the global maximum of

the memory function d(·); however, a nondegenerate limit of the partial sums process

is shown to exist when time is suitably rescaled in the vicinity of the maximum point.
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1 Introduction

Let {X1, . . . , Xn} be a given sample from discrete time series {Xt, t ∈ Z}. The partial sums

process is usually defined as the process

Sn(τ) =

⌊nτ⌋∑
t=1

Xt

indexed by τ ∈ [0, 1], where ⌊a⌋ is the largest integer less or equal to a ∈ R. It is well-

known that the range and fluctuations of partial sums as n→ ∞ can discriminate between

stationary and nonstationary behavior of the time series, characterize the intensity of long

memory, the presence of trends, change-points and other features of interest. Finding the

asymptotic distribution of partial sums is important for time series analysis and inference.

Examples and applications of partial sums limits can be found in the monograph Whitt

(2002).

An important class of stationary time series models form causal linear processes

Xt =
∑
s≤t

ψt−sζs, (1.1)

where ψj , j ≥ 0 are moving average coefficients,
∑∞

j=0 ψ
2
j < ∞, and {ζs} are standardized

uncorrelated random variables (weak white noise). It is well-known that every zero-mean

covariance stationary process {Xt} with spectral density f(x) satisfying
∫ π
−π log f(x)dx >

−∞ admits (Wold’s) representation (1.1). The covariance structure of (1.1) is determined

by the moving average coefficients, ψj , j ≥ 0. In particular, if the ψj ’s decay regularly as

jd−1 for some 0 < d < 1/2, the covariance function of {Xt} in (1.1) is nonsummable (decays

as j2d−1), meaning that (1.1) has long memory and d is called the long memory parameter of

{Xt} (Giraitis et al. (2012)). In addition, if innovations {ζs} are i.i.d.(0, 1), the normalized

partial sums process of {Xt} in (1.1) tends to a fractional Brownian motion with Hurst

parameter H = d+ 1/2, see Davydov (1970), also Giraitis et al. (2012, Proposition 4.4.4).

Various economic and physical time series indicate that the long memory parameter

in real data may change with time. The natural question arises to model changing long

memory and construct various inferential procedures for such models. Testing for a change

or nonconstancy in long memory parameter was discussed in Beran and Terrin (1996),

Horváth and Shao (1999), Sibbertsen and Kruse (2009), Yamaguchi (2011), Lavancier et al.

(2012) and other papers.

The present paper discusses partial sums’ limits of nonstationary linear processes {Xt}
with changing memory intensity. Two classes of nonstationary “time-varying” general-

izations of (1.1) are discussed. The first class is obtained by taking a parametric class

{ψj(d), j = 0, 1, . . . , d ∈ (0,∞)} of moving average coefficients such that for any d ∈ (0,∞)

we have

ψj(d) ∼ κ(d)jd−1 (j → ∞) (1.2)
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for some κ(d) > 0, and replacing a constant value d by a function dt = dt,n of t ∈ {1, . . . , n}
(possibly depending also on n), viz.,

Xt :=

t∑
s=1

ψt−s(dt)ζs, t = 1, . . . , n (1.3)

with {ζs, s ∈ Z} being a sequence of martingale differences with zero mean and unit variance.

A typical example of the above parametric class is FARIMA(0, d, 0) corresponding to

ψj(d) =
d

1
· d+ 1

2
· · · d− 1 + j

j
=

Γ(d+ j)

j!Γ(d)
(j ≥ 1), ψ0(d) = 1. (1.4)

The fact that the moving average representation in (1.3) is truncated at negative s ≤
0 is not very important for our discussion, provided dt ∈ (0, 1/2). However, truncated

FARIMA(0, d, 0) series exist for all d ∈ R and the limit of their partial sums (a type II

fractional Brownian motion) is well-defined for any d > −.5 (Marinucci and Robinson,

1999). Moreover, the truncation in (1.3) seems rather natural in the context of changing

d since otherwise the limit behavior of partial sums depends on the behavior of the dt’s

as t → −∞ and not only on its values in the interval 1 ≤ t ≤ n. See also Marinucci and

Robinson (1999) for econometric considerations in favor of the truncated series. Davidson

and Hashimzade (2009) discuss the differences between the distributions of type I and type II

fractionally integrated processes and the importance to distinguish whether the pre-sample

shocks are included in the lag structure of the model, or suppressed, as this can lead to a

significant distortion of the limiting distribution.

The second class of time-varying linear processes with changing memory parameter was

defined in Philippe et al. (2006, 2008):

Xa
t =

t∑
s=1

at−s(t)ζs, Xb
t =

t∑
s=1

bt−s(t)ζs, (1.5)

where

aj(t) :=
dt−1

1
· dt−2 + 1

2
· dt−3 + 2

3
· · · dt−j − 1 + j

j
,

bj(t) :=
dt−1

1
· dt−j + 1

2
· dt−j+1 + 2

3
· · · dt−2 − 1 + j

j
, j ≥ 1,

(1.6)

a0(t) = b0(t) := 1, are defined for t = 1, 2, . . . , j = 0, 1, . . . , t−1 and a given sequence {dt} =

{dt, t = 1, 2, . . . } of real numbers. In the case when dt ≡ d are constants, the coefficients

aj(t) and bj(t) in (1.6) coincide with FARIMA(0, d, 0) coefficients in (1.4). Similarly to

(1.4), they satisfy the following orthogonality relations

n∑
j=0

b−j (t)an−j(t− j) = 0, t, n = 1, 2, . . . , n < t,
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where b−j (t) := (−1)j(dt−1

j! )
∏j−1

k=1(dt−k−1− j+k), j ≥ 1 are defined as in (1.6) with {dt, t =
1, 2, . . . } replaced by {−dt, t = 1, 2, . . . }.

Partial sums’ limits of time-varying fractionally integrated processes in (1.5) were dis-

cussed in Philippe et al. (2006, 2008), Bružaitė et al. (2007), Doukhan et al. (2007), La-

vancier et al. (2012), albeit most these papers focused on “nontruncated” versions of (1.5)

and “fast changing” memory parameter {dt} (see below). Before proceeding further, let us

note an important distinction between the filter coefficients ψj(dt) and aj(t), bj(t) in (1.6)

(corresponding to the same sequence {dt}): when time changes t → t + 1, this evokes an

“instantaneous” change ψj(dt) → ψj(dt+1) of all filter coefficients including the decay rate

as j → ∞, leading to an “instantaneous change” of the memory intensity of the series (1.3)

at the next time moment t + 1. On the other hand, a similar change t → t + 1 affects the

filter coefficients in (1.6) in a much lesser way and does not essentially alter their asymptotic

behavior as j → ∞ (see Sec. 2). These differences between filter coefficients are reflected in

a different asymptotic behavior of partial sums for models in (1.3) and in (1.5).

Let us describe the main results of the paper. For models in (1.3) and (1.5) with changing

memory parameter we study two characteristic situations of how fast a change occurs.

If the dt’s for t = 1, . . . , n do not depend on n, we say that the corresponding series

{Xt, t = 1, . . . , n} has fast changing memory. On the other hand, if the dt’s have the

form dt = d(t/n) for t = 1, . . . , n where d(τ), τ ∈ [0, 1] is a given function, we say that

{Xt, t = 1, . . . , n} has slowly changing memory.

Sec. 2 discusses the case of fast changing memory. Theorem 4 states that if the sequence

{dt} admits a Cesaro mean

d̄ := lim
n→∞

n−1
n∑

t=1

dt ∈ (0,∞), (1.7)

and satisfies some additional technical conditions, then partial sums of Xa
t and Xb

t in (1.5),

normalized by nd̄+1/2, tend to a multiple of the Gaussian process

Jd̄(τ) :=

∫ τ

0
(τ − x)d̄W (dx), τ ∈ [0, 1], (1.8)

where {W (dx), x ∈ [0, 1]} is a standard Gaussian white noise with zero mean and variance

dx. The process in (1.8) represents the “rough part” of a fractional Brownian motion (fBm)

and is also called a type II fBm (Marinucci and Robinson, 1999). Theorem 4 below extends

some results in Philippe et al. (2006, 2008), Bružaitė et al. (2007), Doukhan et al. (2007)

and Lavancier et al. (2012).

Theorem 2 refers to model (1.3). In this case, the role of the asymptotic parameter d̄ in

the previous theorem is played by

d+ := lim sup
t→∞

dt ∈ (0,∞). (1.9)
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We also assume that dt < d+, for all t ∈ N∗ = {1, 2, . . . }, and the existence of a properly

normalized limit of the tail empirical process of the sequence {dt}. In particular, these

assumptions are satisfied a.s. for a realization of an i.i.d. sequence {dt} of r.v.’s taking

values in an interval [d−, d+) ⊂ (0, 1) and having a continuous and positive probability

density at d+. We show that in a such case, the partial sums process of (1.3) converges

to Jd+ at a slower normalization nd++1/2/ log n. See Sec. 2 and Theorem 2 for precise

formulations and details.

Sec. 3 discusses the case of slowly changing memory parameter dt = d(t/n), according to a

given “memory function” d(τ), τ ∈ [0, 1] taking values in the interval (0, 1/2). It is clear that

in this case, the behavior and normalization of the partial sums process is determined by

the behavior of the function d(·) at the maximum point τmax := argmax(d(τ) : τ ∈ [0, 1]).

In this paper we restrict ourselves to a model situation where the maximum is unique

and the function d(·) takes a power form in its neighborhood: d(τmax ± u) = dmax − (∆± +

o(1))uγ (u ↓ 0) for some ∆± ≥ 0, γ > 0, τmax ∈ (0, 1). Corollary 8 says that in such case, the

partial sums process of {Xt} in (1.3), normalized by
(

n
log1/γ n

)dmax+1/2
, tends to degenerated

Gaussian processes Z, taking constant values on intervals [0, τmax) and (τmax, 1] with possible

discontinuities at τmax± 0 having an explicit stochastic integral representation. However, if

time is rescaled by factor log1/γ n near the maximum point, the above partial sums process

exhibits a nondegenerate behavior, see Theorems 5 and 7, below. Similar inference holds

for the partial sums process of {Xa
t } in (1.5) (see Corollary 8 (ii) and Theorem 7). The

above mentioned “localization” of the partial sums process near the maximum point dmax

implies that the truncation of the original series at negative s ≤ 0 does not affect the limit

and therefore “stationarity” condition dmax < 1/2 is needed in this case (see also Remark 3

below).

The proofs of our results use the scheme of discrete stochastic integrals in Proposition 1

below (see Surgailis (2003)). It is a convenient application of the martingale central limit

theorem in Billingsley (1968, Theorem 23.1) for weighted sums of martingale differences.

See Bružaitė and Vaičiulis (2005) for an extension of this scheme to multivariate processes

and more general innovations satisfying the central limit theorem.

Let MD(0, 1) denote the class of all standardized stationary and ergodic martingale

differences {ζs, s ∈ Z}, i.e., Eζ2s = 1, E[ζs|Fs−1] = 0 for any s ∈ Z, where {Fs, s ∈ Z}
is a nondecreasing family of σ−fields. Let be given {0 < mn → ∞, n ∈ N∗}, a sequence

of positive numbers tending to infinity, and {pn ∈ Z, n ∈ N∗}, an arbitrary sequence of

integers.

Introduce a discrete stochastic measure ηn on R: for any bounded Borel set B ⊂ R, let

ηn(B) := m−1/2
n

∑
s∈Z: s/mn∈B

ζs+pn . (1.10)

Observe, for any B = (b1, b2] ⊂ R, Eη2n(B) ∼ b2−b1 = leb(B). From the above mentioned
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central limit theorem in Billingsley (1968, Theorem 23.1) it follows that for any finite union

B of disjoint finite intervals, ηn(B) →law η(B), where η is a Gaussian white noise with zero

mean and variance E(η(du))2 = du.

Let L2
n(R) be the class of all piecewise-constant functions g ∈ L2(R) taking constant values

gs on intervals
(
s/mn, (s+ 1)/mn

]
⊂ R, s ∈ Z. A discrete stochastic integral

∫
g(u)ηn(du)

is defined for such g ∈ L2
n(R) by∫

g(u)ηn(du) := m−1/2
n

∑
s∈Z

gs ζs+pn .

Proposition 1 Let {ζs} ∈MD(0, 1) be a sequence of martingale differences and let g(n) ∈
L2
n(R), n = 1, 2, . . . be a sequence of functions convergent to g ∈ L2(R), viz.

lim
n→∞

∥g(n) − g∥ = 0, (1.11)

where ∥g∥2 =
∫
g2(u)du. Then∫

g(n)(u)ηn(du) →law

∫
g(u)η(du) ∼ N (0, ∥g∥2).

Notation. In what follows, →D[0,1], →D(R), etc., denote the weak convergence of random

elements in the Skorokhod spaces D[0, 1], D(R), etc., of cadlag functions, with the sup-

topology. The weak convergence of finite-dimensional distributions is denoted by →f.d.d..

Notation C stands for a constant whose precise value is unimportant and which may change

from line to line.

2 Partial sums limits under fast changing memory

Consider first the case of nonstationary long memory linear process in (1.3). Let vn :=

log−1/2 n, n ≥ 2.

Assumption (A.1) There exists 0 < d+ < ∞ such that dt < d+ for any t = 1, 2, . . . and

relation (1.9) holds, viz., d+ = lim supt→∞ dt. Moreover, there exist β ∈ (0, 1/2) and c+ > 0

such that

sup
x∈[0,1]

∣∣Φn(x)
∣∣ = O(n−β), n→ ∞, (2.1)

where

Φn(x) :=
1

nvn

n∑
t=1

(
1(d+ − xvn < dt < d+)− c+xvn

)
, x ∈ [0, 1]. (2.2)

Remark 1 As noted in the Introduction, a natural example of a sequence {dt} satisfying

Assumption (A.1) is a typical realization of a sequence of stationary r.v.’s taking values in

the interval (0, d+). In such case, assuming the uniform marginal distribution on (0, d+)
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and c+ = 1/d+, the process Φn in (2.2) with general vn → 0, nvn → ∞ has zero mean and is

called the (centered) tail empirical process. In addition, if {dt} are i.i.d. and vn = log−1/2 n,

as above, then (2.1) holds a.s. with any 0 < β < 1/2 (Mason (1988)). The last result is also

valid under certain dependence conditions on {dt}. See Csörgő and Horváth (1993), Drees

(2002), Kulik and Soulier (2011).

Theorem 2 Let {Xt} be the linear process in (1.3), where {ζs} ∈ MD(0, 1), {dt} satisfy

Assumption (A.1) and ψj(d) satisfy the following conditions:

ψj(d)

κ(d)jd−1
−→ 1, as j → ∞ and d→ d+, (2.3)

and

|ψj(d)| ≤ C(j + 1)d−1, ∀ d ∈ (0,∞), ∀ j ≥ 0, (2.4)

where C > 0 is independent of d, j. Then

log n

nd++1/2
Sn(τ) −→D[0,1] c1 Jd+(τ), where c1 :=

c+κ(d+)

d+
(2.5)

and where Jd+ is a type II fBm in (1.8).

Proof of Theorem 2. We shall restrict the proof of finite dimensional convergence in (2.5)

to one-dimensional convergence at τ = 1 since the general case follows analogously. To this

end, using Proposition 1, it suffices to prove the convergence

g(n)(z) :=
log n

nd+

n∑
t=⌊zn⌋

ψt−⌊nz⌋(dt)

→ κ(d+)c+

∫ 1

z
(y − z)d+−1dy = c1(1− z)d+ =: g(z) (2.6)

in L2[0, 1]. Split g(n)(z) = g
(n)
1 (z) + g

(n)
2 (z), where

g
(n)
1 (z) :=

log n

nd+

n∑
t=⌊zn⌋

ψt−⌊zn⌋(dt)1(d+ − vn < dt < d+), g
(n)
2 (z) := g(n)(z)− g

(n)
1 (z).

From (2.4) we obtain

|g(n)2 (z)| ≤ C log n

nd+

n∑
t=⌊zn⌋

(t− ⌊zn⌋+ 1)d+−vn−1

≤ C log n

nd+
nd+−vn

≤ Celog logn−vn logn = o(1) (2.7)
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uniformly in z ∈ [0, 1]. Consequently, it remains to show (2.6) for g
(n)
1 (z) instead of g(n)(z).

Consider first the above convergence for ψj(d) ≡ ψ̃j(d) := κ(d+)(j + 1)d−1, i.e.,

g̃
(n)
1 (z) :=

κ(d+) log n

nd+

n∑
t=⌊zn⌋

(t− ⌊zn⌋+ 1)dt−11(d+ − vn < dt < d+), (2.8)

or the main term according to the asymptotics in (1.2). To this end, rewrite g̃
(n)
1 (z) =

hn(z) + en(z), where

hn(z) :=
c+κ(d+) log n

nd+

n∑
t=⌊zn⌋

∫ vn

0
(t− ⌊zn⌋+ 1)d+−x−1dx, en(z) := g̃n1(z)− hn(z).

We shall prove that

en(z) → 0 and hn(z) → g(z) in L2[0, 1]. (2.9)

Let us check first that hn(z) is bounded on (0, 1) uniformly in n. Indeed, let k = n−⌊nz⌋+1

and let z be such that k ≥ 2 (the case k = 1 is obvious). Then

hn(z) ≤ C log n

nd+

∫ vn

0
kd+−xdx

= C
(k
n

)d+ log n

log k

(
1− k−vn

)
≤ C

(k
n

)d+ log n

log k
≤ C

since d+ > 0 and x 7→ xd+/ log x is monotone increasing on [x0,∞), x0 = e1/d+ . Next, for

any 0 < z < 1 fixed, using the fact that (sn− ⌊zn⌋+ 1)−vn → 0 for any fixed s ∈ (z, 1), we

obtain

hn(z) = o(1) +
c+κ(d+) log n

nd+

n∑
t=⌊zn⌋+1

(t− ⌊zn⌋+ 1)d+−1

∫ vn

0
(t− ⌊zn⌋+ 1)−xdx

= o(1) + c+κ(d+)
n∑

t=⌊zn⌋+1

log n

log(t− ⌊zn⌋+ 1)

(t− ⌊zn⌋+ 1)d+−1

nd+

(
1− (t− ⌊zn⌋+ 1)−vn

)
∼ c+κ(d+)

∫ 1

z

log n

log(sn− ⌊zn⌋+ 1)

(sn− ⌊zn⌋+ 1)d+−1

nd+−1

(
1− (sn− ⌊zn⌋+ 1)−vn

)
ds

∼ c+κ(d+)

∫ 1−z

0

log n

logn+ log x
xd+−1 dx

∼ c+κ(d+)

d+
(1− z)d+ = g(z).

This proves the second relation in (2.9).
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Next, let us estimate the remainder term, en(z), using condition (2.1). To simplify the

notation, assume that κ(d+) = 1. We first rewrite en(z) as

en(z) =
log n

nd+

n∑
t=⌊zn⌋

θn,t(z), where

θn,t(z) := (t− ⌊zn⌋+ 1)dt−11(d+ − vn < dt < d+)− c+vn

∫ 1

0
(t− ⌊zn⌋+ 1)d+−yvn−1dy.

Introduce

Φn(x; t) :=
1

nvn

t∑
k=1

(1(d+ − vnx < dk < d+)− c+vnx), x ∈ [0, 1], t = 1, . . . , n.

Note that Φn(x; t) =
tvt
nvn

Φt

(
xvn
vt

)
and therefore uniformly in n ≥ 2

sup
x∈[0,1]

∣∣Φn(x; t)
∣∣ ≤ Ct−β, (2.10)

according to (2.1) and the fact that nvn increases with n. Moreover,

sup
x∈[0,1]

∣∣Φn(x; t)− Φn(x; t+ 1)
∣∣ ≤ C

nvn
, t = 1, . . . , n− 1. (2.11)

Observe (t−⌊zn⌋+1)dt−11(d+− vn < dt < d+) =
∫ 1
0 (t−⌊zn⌋+1)d+−yvn−1dy1(d+− yvn <

dt < d+). Therefore integrating by parts we obtain

θn,t(z) = nvn

∫ 1

0
(t− ⌊zn⌋+ 1)d+−yvn−1dy

[
Φn(y; t)− Φn(y; t− 1)

]
= θ′n,t(z) + θ′′n,t(z),

where

θ′n,t(z) := nvn(t− ⌊zn⌋+ 1)d+−vn−1
[
Φn(1; t)− Φn(1; t− 1)],

θ′′n,t(z) := vn log(t− ⌊zn⌋+ 1)

∫ 1

0
(t− ⌊zn⌋+ 1)d+−yvn−1[Φn(y; t)− Φn(y; t− 1)]dy.

Using (2.11) and (2.7), we obtain

|e′n(z)| :=
log n

nd+

∣∣∣ n∑
t=⌊zn⌋

θ′n,t(z)
∣∣∣ ≤ C log n

nd+

n∑
t=⌊zn⌋

(t− ⌊zn⌋+ 1)d+−vn−1

≤ C log n

nd+
nd+−vn = O

( log n
nvn

)
= o(1), (2.12)

uniformly in 0 < z < 1.

Next, we estimate e′′n(z) :=
logn

nd+

∑n
t=⌊zn⌋ θ

′′
n,t(z). Split e

′′
n(z) = e′′n1(z) + e′′n2(z), where

e′′n1(z) :=
logn

nd+

⌊zn⌋+⌊n1−βvn⌋∑
t=⌊zn⌋

θ′′n,t(z), e′′n2(z) :=
log n

nd+

n∑
t=⌊zn⌋+⌊n1−βvn⌋+1

θ′′n,t(z).
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Using (2.11), we estimate

|e′′n1(z)| ≤ C log n

nd+

⌊zn⌋+⌊n1−βvn⌋∑
t=⌊zn⌋

vn log(t− ⌊zn⌋+ 1)

∫ 1

0
(t− ⌊zn⌋+ 1)d̄+−yvn−1dy

≤ C log n

nd+

⌊n1−βvn⌋∑
s=1

vn log s

∫ 1

0
sd+−yvn−1dy

≤ C log n

nd+
(n1−βvn)

d+ = O
(
(vnn

−β)d+ log n
)

= o(1) (2.13)

uniformly in z ∈ (0, 1), since β > 0, d+ > 0 and vn = log−1/2 n.

To estimate e′′n2(z), we sum by parts over t and then write

e′′n2(z) =
log n

nd+
nvn

(
ın1(z) + ın2(z)

)
, (2.14)

where

ın1(z) := vn log(t− ⌊zn⌋+ 1)

∫ 1

0
(t− ⌊zn⌋+ 1)d+−yvn−1Φn(y; t)dy

∣∣∣t=n

t=⌊zn⌋+⌊n1−βvn⌋
,

ın2(z) :=

n−1∑
t=⌊zn⌋+⌊n1−βvn⌋

vn

∫ 1

0

[
(t− ⌊zn⌋+ 1)d+−yvn−1 log(t− ⌊zn⌋+ 1)

−(t+ ⌊zn⌋+ 2)d+−yvn−1 log(t− ⌊zn⌋+ 2)
]
Φn(y; t)dy

and where we use the notation g(t)|t=b
t=a := g(b)− g(a).

Using (2.10) we obtain

|ın1(z)| ≤ C(n− ⌊zn⌋+ 1)d+−1(1− (n− ⌊zn⌋+ 1)−vn)n−β

+ C(⌊n1−βvn⌋+ 1)d+−1(1− (n− ⌊n1−βvn⌋+ 1)−vn)(⌊zn⌋+ ⌊n1−βvn⌋)−β

≤ C(nz)−β(n1−βvn)
d+−1. (2.15)

Next, using (2.10) and xd−1 − (x + 1)d−1 ≤ xd−2, |xd−1 log x − (x + 1)d−1 log(x + 1)| ≤
Cxd−2 log x, for x ≥ 2, we obtain

|ın2(z)| ≤ C

n−1∑
t=⌊zn⌋+⌊n1−βvn⌋

t−βvn log(t− ⌊zn⌋+ 1)

∫ 1

0
(t− ⌊zn⌋+ 1)d+−yvn−2dy

≤ C(⌊zn⌋+ 1)−β
n−1∑

t=⌊zn⌋+⌊n1−βvn⌋

(t− ⌊zn⌋+ 1)d+−2

≤ C(nz)−β


(n1−βvn)

d+−1, if 0 < d+ < 1,

log n if d+ = 1,

nd+−1, if d+ > 1.

(2.16)
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From (2.13), (2.14), (2.15), (2.16) we obtain

|e′′n(z)| ≤ Cϵ(n)z−β, (2.17)

where ϵ(n) := ( vn
nβ )

d+∧1 log2 n→ 0 does not depend on z ∈ (0, 1). Clearly, (2.12) and (2.17)

imply the first convergence (2.9) in view of the fact that 0 < β < 1/2. This proves (2.9)

and the convergence in (2.6) for g(n)(z) replaced by g̃
(n)
1 (z) in (2.8).

To complete the proof of (2.6), it remains to prove that un(z) := g
(n)
1 (z)− g̃

(n)
1 (z) → 0 in

L2[0, 1]. We have

un(z) :=
log n

nd̄+

n∑
t=⌊zn⌋

{
ψt−⌊zn⌋(dt)− κ(d̄+)(t− ⌊zn⌋+ 1)dt−1

}
1(d̄+ − vn < dt < d̄+).

From the discussion above, it follows the dominating bound |g̃(n)1 (z)| ≤ ḡ(z), where ḡ(z) :=

Cz−β belongs to L2[0, 1]. In view of (2.4), a similar bound holds for |g(n)1 (z)| and hence for

|un(z)| as well. Consequently, it suffices to show that un(z) → 0 for a.e. z ∈ (0, 1). The

last fact can be proved using condition (2.3) and a standard argument using the dominated

convergence theorem. This ends the proof of Theorem 2. �

Next, we discuss the case of time-varying fractionally integrated processes in (1.5). Fol-

lowing Bružaitė et al. (2007) we introduce the following definitions.

Definition 3 A bounded sequence {dt, t = 1, 2, . . . } of real numbers will be called:

(i) Averageable at +∞ if the following limit exists

d̄ := lim
n→∞

n−1
s+n∑
k=s

dk uniformly in s ≥ 1. (2.18)

(ii) Almost periodic at +∞ if for each ϵ > 0 there exist kϵ > 0 and a periodic sequence

{dϵt, t ∈ Z} such that supt>kϵ |dt − dϵt| < ϵ.

The limit d̄ in (2.18) will be called the mean value of {dt}. Denote A(+∞) and AP(+∞)

the classes of all sequences {dt} that are averageable at +∞ and almost periodic at +∞, re-

spectively. Then AP(+∞) ⊂ A(+∞) but the converse implication is not true (see Bružaitė

et al. (2007)). Clearly any asymptotic sequence (i.e. having a finite limit d∞ := limt→∞ dt)

belongs to the class AP(+∞) and hence to A(+∞), with d̄ = d∞. As noted in Bružaitė

et al. (2007, Remark 2.6), the class AP(+∞) is closed under algebraic operations, shifts

and uniform limits. By easy observation, the last fact holds for the class of asymptotic

sequences, too.

Assumption (A.2) M ⊂ A(+∞) is a class which is closed under algebraic operations,

shifts, and uniform limits.
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Assumption (A.3) Assume {dt} ∈ M, dt ̸∈ {0,−1,−2, . . . } for any t = 1, 2, . . . . More-

over, let there exist C, δ > 0 such that for any s ≥ 1

∣∣∣n−1
s+n∑
k=s

(dk − d̄)
∣∣∣ ≤ Cn−δ.

With a given sequence {dt} ∈ M we associate sequences {qa(t)} ∈ M, {qb(t)} ∈ M by

qa(t) :=

t∏
k=1

(
1 +

dk − d̄

d̄+ t− k − 1

)
, qb(t) :=

∞∏
k=t

(
1 +

dk − d̄

d̄+ k − t+ 1

)
.

Denote

Sa
n(τ) =

⌊nτ⌋∑
t=1

Xa
t , Sb

n(τ) =

⌊nτ⌋∑
t=1

Xb
t , τ ∈ [0, 1].

Theorem 4 Let {Xa
t }, {Xb

t } be time-varying fractionally integrated processes in (1.5) with

innovations {ζs} ∈ MD(0, 1). Assume that M and {dt} ∈ M satisfy Assumptions (A.2)

and (A.3), and that d̄ ∈ (0,∞). Then

n−d̄−1/2Sa
n(τ) −→D[0,1] ca Jd̄(τ),

n−d̄−1/2Sb
n(τ) −→D[0,1] cb Jd̄(τ),

where Jd̄ is a type II fBm in (1.8), and the asymptotic constants ca := qa/Γ(d̄), cb :=(
q2b
)1/2

/Γ(d̄) are written in terms of the mean values qa, q2b , d̄ of the averageable at +∞
sequences {qa(t)}, {q2b (t)}, {dt}, respectively.

The proof of Theorem 4 follows from Bružaitė et al. (2007, proofs of Theorems 3.3, 3.4).

Let us note that the restriction d̄ ∈ (0, 1/2) in the above mentioned paper is due to the fact

that Bružaitė et al. (2007) discuss the case of infinite (nontruncated) moving averages of

the type (1.5), in which case stronger conditions on {dt} are needed.

Remark 2 The averaging property in (2.18) is quite strong and is not satisfied e.g. by

a typical realization of i.i.d. sequence {dt} (with d̄ = Ed1), a.s., unless this sequence is

constant. On the other hand, Doukhan et al. (2007) proved unconditional convergence to

a type I fBm of partial sums of (nontruncated) moving averages of (1.5) with i.i.d. {dt}.
The question remains open if it is possible to weaken the uniformity condition in (2.18) and

replace it by the existence of a (simple) Cesaro mean in (1.7) so that Theorem 4 can be

extended to a typical realization of an i.i.d. sequence {dt}, independent of innovations {ζs},
and the a.s. conditional convergence of the partial sums in D[0, 1].
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3 Partial sums limits under slowly changing memory

In this section we discuss the partial sums process of linear sequences in (1.3) and (1.5)

with slowly changing memory parameter dt = d(t/n), where d(τ), τ ∈ [0, 1] is a given

function having a unique supremum dmax := d(τmax) ∈ (0, 1/2) at some point τmax ∈ (0, 1).

This, clearly, implies that for any ϵ > 0 satisfying (τmax − ϵ, τmax + ϵ) ⊂ [0, 1] there exists

δ = δ(ϵ) > 0 such that

d(τ) ≤ dmax − δ, τ ̸∈ (τmax − ϵ, τmax + ϵ). (3.1)

Precise conditions on d(·) are given in Assumption (A.4) below.

Assumption (A.4) The function d : [0, 1] 7→ (0, 1/2) is a measurable function having a

unique supremum d(τmax) =: dmax ∈ (0, 1/2) at some point τmax ∈ (0, 1). Moreover, for

some γ > 0, there exist the limits

lim
u↓0

u−γ(d(τmax)− d(τmax ± u)) =: ∆± > 0. (3.2)

Theorem 5 Let d(·) satisfy Assumption (A.4) and the innovations {ζs} ∈ MD(0, 1). Let

{Xt} be the linear process in (1.3), where ψj(d) satisfy conditions (2.4) and (2.3) of Theorem

2, with d+ replaced by dmax. Then( log1/γ n
n

)dmax+1/2
Sn

(
τmax +

τ

log1/γ n

)
−→D(R) U(τ), (3.3)

where the limit process

U(τ) := κ(dmax)

∫ τ

−∞
η(du)

∫ τ

u
(v − u)dmax−1e−∆sgn(v)|v|γdv, τ ∈ R (3.4)

is well-defined as a stochastic integral with respect to a Gaussian white noise η(du) on the

real line, with zero mean and variance E(η(du))2 = du.

Note that, if ∆+ = ∆− = 0, then the increment process

U(τ)− U(0) =
κ(dmax)

dmax

∫ ∞

−∞

(
(τ − u)dmax

+ − (−u)dmax
+

)
η(du), τ ∈ R

is well-defined as well and coincides with a type I fBm with Hurst parameter H = dmax+1/2

and stationary increments.

Remark 3 Condition dmax < 1/2 is necessary for the existence of (3.4). Indeed,

EU2(0) = κ2(dmax)

∫ ∞

0

(∫ u

0
(u− v)dmax−1e−∆−vγdv

)2
du

≥ C

∫ ∞

1

(∫ 1

0
(u− v)dmax−1dv

)2
du

= C

∫ ∞

1

(
(u− 1)dmax − udmax

)2
du = ∞

for dmax ≥ 1/2.
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Proposition 6 Let γ > 0, ∆+ > 0, ∆− > 0. Then {U(τ), τ ∈ R} in (3.4) has a sample

continuous version and finite a.s. limits limτ→±∞ U(τ) =: U(±∞), U(−∞) = 0.

Proof. Let c := min(∆+,∆−) > 0 and let

µ(B) :=

∫
B

(
1(|x| ≤ 1) + e−c|x|γ∧1

1(|x| > 1)
)
dx

be a finite measure on the real line. Denote µ(B) =: µ(a, b) in the case B = (a, b]. Note

that for any c, γ > 0 and any 0 ≤ a < b∫ b

a
e−cxγ

dx ≤ µ(a, b), e−caγ [(b− a) ∧ 1] ≤ e2cµ(a, b). (3.5)

The first inequality in (3.5) is obvious. Let us check the second one. It suffices to consider

the case a < b ≤ a + 1 only since the l.h.s. of this inequality does not depend on b for

b ≥ a+ 1. Let v := b− a ∈ [0, 1]. Then the second inequality in (3.5) becomes

ve−caγ ≤ e2c
∫ a+v

a

(
1(0 < x ≤ 1) + e−cxγ∧1

1(x > 1)
)
dx. (3.6)

The above inequality is obvious for a + v ≤ 1. Let a + v > 1. Then (3.6) follows from

e−caγ ≤ e2ce−c(a+v)γ∧1
, or (a+ v)γ∧1 ≤ 2 + aγ . Let γ ≤ 1, then the last inequality holds by

(a+v)γ ≤ aγ+vγ ≤ aγ+1, since v ∈ [0, 1]. Next, let γ > 1, then (a+v)γ∧1 = a+v ≤ aγ+2

if a > 1 and a+ v ≤ 2 ≤ 2 + aγ for a ∈ [0, 1]. This proves (3.6) and (3.5), too.

According to the Kolmogorov moment criterion, it suffices to show that there exists a

constant C <∞ such that for any −∞ < τ1 < τ2 <∞

E(U(τ2)− U(τ1))
2 ≤ C(µ(τ1, τ2))

1+2dmax . (3.7)

It suffices to show (3.7) for τi ≥ 0 (i = 1, 2) and τi ≤ 0 (i = 1, 2) separately. Let us assume

0 ≤ τ1 < τ2 in the rest of the proof. According to the definition in (3.4), the left-hand side

of (3.7) does not exceed CI(τ1, τ2), where

I(τ1, τ2) :=

∫
R

{∫ τ2

τ1

(v − u)dmax−1
+ e−cvγdv

}2

du

=

∫ τ2

τ1

∫ τ2

τ1

e−cvγ1 e−cvγ2 dv1dv2

∫
R
(v1 − u)dmax−1

+ (v2 − u)dmax−1
+ du

= Cdmax

∫ τ2

τ1

∫ τ2

τ1

e−cvγ1 e−cvγ2 |v1 − v2|2dmax−1dv1dv2

= Cdmax(I1 + I2),

where Cdmax = B(dmax, 1− 2dmax) and

I1 :=

∫ τ2

τ1

∫ τ2

τ1

e−cvγ1 e−cvγ2 |v1 − v2|2dmax−11(|v1 − v2| > 1)dv1dv2

≤ (µ(τ1, τ2))
2 ≤ C(µ(τ1, τ2))

1+2dmax
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according to the first inequality in (3.5). Next,

I2 :=

∫ τ2

τ1

∫ τ2

τ1

e−cvγ1 e−cvγ2 |v1 − v2|2dmax−11(|v1 − v2| ≤ 1)dv1dv2

≤ e−cτγ1

∫ τ2

τ1

∫ τ2

τ1

e−cvγ1 |v1 − v2|2dmax−11(|v1 − v2| ≤ 1)dv1dv2

=
e−cτγ1

dmax

∫ τ2

τ1

e−cvγ (τ2 ∧ (1 + v)− v)2dmaxdv

≤ 1

dmax
[(τ2 − τ1) ∧ 1]2dmaxe−cτγ1

∫ τ2

τ1

e−cvγdv

≤ 1

dmax
(µ(τ1, τ2))

2dmax+1,

where we used (3.5). This proves (3.7) and the proposition. �

Proof of Theorem 5. We shall restrict the proof of finite-dimensional convergence in (3.3)

to one-dimensional convergence at τ > 0. The proof uses Proposition 1 with

mn :=
n

log1/γ n
, pn := ⌊nτmax⌋. (3.8)

Accordingly, we need, firstly, to write the l.h.s. of (3.3) as a discrete stochastic integral∫
hn(u; τ)ηn(du) with ηn(du) given in (1.10) and some integrand hn(·; τ) ∈ L2

n(R) and,

secondly, to verify (1.11) for g(n) = hn(·; τ) and g = h(·; τ) as defined in (3.4), viz.

h(u; τ) := κ(dmax)

∫ τ

u
(v − u)dmax−1e−∆sgn(v)|v|γdv.

It is easy to see that for sufficiently large n( log1/γ n
n

)dmax+1/2
Sn

(
τmax +

τ

log1/γ n

)
=

∫
hn(u; τ)ηn(du)

with

hn(u; τ) := m−dmax
n

⌊n(τmax+τ mn
n

)⌋−pn∑
t=s

ψt−s

(
d
( t+ pn

n

))
, if u ∈

( s

mn
,
s+ 1

mn

]
and s = 1− pn, 2− pn, . . . ,

⌊
n
(
τmax + τ

mn

n

)⌋
− pn,

hn(u; τ) := 0 otherwise and ηn
(
( s
mn
, s+1
mn

]
)
= m

−1/2
n ζs+pn .

It is convenient to split Sn
(
τmax +

τ
log1/γ n

)
= Sn(τmax) +

[
Sn

(
τmax +

τ
log1/γ n

)
−Sn(τmax)

]
and, correspondingly,∫

hn(u; τ)ηn(du) =

∫
h−n (u; 0)ηn(du) +

∫
h+n (u; τ)ηn(du),

where h−n (u; 0) := hn(u; 0), h
+
n (u; τ) := hn(u; τ)− h−n (u; 0). Hence, (1.11) follows from

lim
n→∞

∥h−n (·; 0)− h−(·; 0)∥ = 0, lim
n→∞

∥h+n (·; τ)− h+(·; τ)∥ = 0, (3.9)
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where h−(u; 0) := h(u; 0), h+(u; τ) := h(u; τ)− h(u; 0). We have( log1/γ n
n

)dmax+1/2[
Sn

(
τmax +

τ

log1/γ n

)
− Sn(τmax)

]
= m−dmax−1/2

n

⌊n(τmax+τ mn
n

)⌋∑
s=1

{ ⌊n(τmax+τ mn
n

)⌋∑
t=(⌊nτmax⌋+1)∨s

ψt−s(d(t/n))

}
ζs =

∫
h+n (u; τ)ηn(du)

with

h+n (u; τ) := m−dmax
n

⌊n(τmax+τ mn
n

)⌋−pn∑
t=1∨s

ψt−s

(
d
( t+ pn

n

))
, if u ∈

( s

mn
,
s+ 1

mn

]
and s = 1− pn, 2− pn, . . . ,

⌊
n
(
τmax + τ

mn

n

)⌋
− pn,

and h+n (u; τ) := 0 otherwise. To prove the second relation in (3.9), note that by (3.2)

d
(
τmax + u

)
= dmax −∆+u

γ(1 + ϵ1(u)),

where ϵ1(u) vanishes as u ↓ 0, so that

d
( t+ pn

n

)
= d

(
τmax +

t+ ⌊nτmax⌋ − nτmax

n

)
= dmax −∆+

( t
n

)γ(
1 + ϵ2(t, n)

)
, (3.10)

where ϵ2(t, n) is some vanishing function as t/n ↓ 0, n → 0. Since s = ⌈umn⌉ − 1 we can

rewrite h+n (u; τ) as

h+n (u; τ) = m−dmax
n

⌊n(τmax+τ mn
n

)⌋−pn∑
t=1∨(⌈umn⌉−1)

ψt−⌈umn⌉+1

(
d
( t+ pn

n

))
× 1

(
− pn < umn ≤

⌊
n
(
τmax + τ

mn

n

)⌋
− pn

)
= h̃+n (u; τ) + (h+n (u; τ)− h̃+n (u; τ)), (3.11)

where

h̃+n (u; τ) := m−dmax
n

⌊n(τmax+τ mn
n

)⌋−pn∑
t=1∨(⌈umn⌉−1)

κ
(
d
( t+ pn

n

))
(t− ⌈umn⌉+ 1)d(

t+pn
n

)

× 1
(
− pn < umn ≤

⌊
n
(
τmax + τ

mn

n

)⌋
− pn

)
.

We will show next that for any fixed u ≤ τ

h̃+n (u; τ) → κ(dmax)

∫ τ

u∨0
(v − u)dmax−1 e−∆+vγdv (3.12)

and

∥h+n (·; τ)− h̃+n (·; τ)∥ → 0. (3.13)
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The convergence (3.13) follows from assumptions (2.3)–(2.4) and a standard argument

using the dominated convergence theorem. To prove (3.12), rewrite

h̃+n (u; τ) =

⌊n(τmax+τ mn
n

)⌋−pn∑
t=1∨(⌈umn⌉−1)

ψ(1)
n (t)ψ(2)

n (t;u)ψ(3)
n (t;u),

where

ψ(1)
n (t) := κ

(
d
( t+ pn

n

))
,

ψ(2)
n (t;u) :=

(t− ⌈umn⌉+ 1)dmax−1

mdmax
n

,

ψ(3)
n (t;u) :=

(t− ⌈umn⌉+ 1)d(
t+pn

n
)

(t− ⌈umn⌉+ 1)dmax
1
(
− pn < umn ≤

⌊
n
(
τmax + τ

mn

n

)⌋
− pn

)
.

Below we show that for any fixed u > 0, uniformly in t ∈ {⌈umn⌉, . . . , ⌊n(τmax+ τ
mn
n )⌋−

pn}, the following relations hold:

ψ(1)
n (t) → κ(dmax), (3.14)

and

ψ(2)
n (t;u) ∼

( t

mn
− u

)dmax−1 1

mn
, ψ(3)

n (t;u) ∼ e−∆+( t
mn

)γ 1(−∞ < u ≤ τ). (3.15)

Relations (3.14)–(3.15) imply that for any u > 0

h̃+n (u; τ) ∼ κ(dmax)

⌊τmn⌋∑
t=⌈umn⌉−1

( t

mn
− u

)dmax−1 1

mn
e−∆+( t

mn
)γ 1(u ≤ τ)

→ κ(dmax)

∫ τ

u
(v − u)dmax−1 e−∆+vγdv,

i.e. (3.12) holds.

Relation in (3.14) follows from (3.10), by noting that

κ
(
dmax −∆+

( t
n

)γ(
1 + ϵ2(t, n)

))
= κ

(
dmax −∆+

1

log n

( t

mn

)γ(
1 + ϵ2(t, n)

))
→ κ(dmax)

uniformly for t ∈ {⌈umn⌉, . . . , ⌊n(τmax + τ mn
n )⌋ − pn}.

The first relation in (3.15) is obvious. To prove the second relation, rewrite

(t− ⌈umn⌉+ 1)d(
t+pn

n
)

(t− ⌈umn⌉+ 1)dmax
= exp

{(
d
( t+ pn

n

)
− dmax

)
log(t− ⌈umn⌉+ 1)

}
= exp

{
−∆+

( t

mn

)γ
(1 + ϵ2(t, n))

logmn + log t−⌈umn⌉+1
mn

log n

}
= exp

{
−∆+

( t

mn

)γ
(1 + ϵ2(t, n))(1 + ϵ3(t, n))

}
,
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where both ϵ2(t, n), ϵ3(t, n) vanish uniformly for t ∈ {⌈umn⌉, . . . , ⌊n(τmax + τ mn
n )⌋ − pn}.

The convergence in L2(R), or the second relation in (3.9), follows easily from (3.11),

relations (3.12)–(3.13) and the boundedness of κ(·).
Let us prove the first relation in (3.9). We have

m−dmax−1/2
n Sn(τmax) = m−dmax−1/2

n

⌊nτmax⌋∑
s=1

⌊nτmax⌋∑
t=s

ψt−s(d(t/n))ζs =

∫
h−n (u; 0)ηn(du),

where

h−n (u; 0) := m−dmax
n

0∑
t=s

ψt−s

(
d
( t+ pn

n

))
, if u ∈

( s

mn
,
s+ 1

mn

]
and s = 1− pn, 2− pn, . . . , 0

and h−n (u; 0) := 0 otherwise. Similarly to (3.10) we have

d
( t+ pn

n

)
= dmax −∆−

( t
n

)γ(
1 + ϵ4(t, n)

)
for t = 0,−1, . . .

where ϵ4(t, n) vanishes as |t|/n ↓ 0, n → 0. Hence, similarly to (3.16) we obtain the

pointwise convergence

h−n (u; 0) → κ(dmax)

∫ 0

u
(v − u)dmax−1e−∆−|v|γdv = h−(u; 0)

for any u < 0. Moreover, the above mentioned convergence is uniform on any compact

interval u ∈ [−K, 0]. To prove the first relation in (3.9), it suffices to show that for any

ϵ̃ > 0 one can find K > 0 and n0 such that

JK,n :=

∫ −K

−∞
(h−n (u; 0))

2du ≤ ϵ̃, ∀n > n0. (3.16)

Using (2.4) and the definition of h−n (u), we have that for all sufficiently large n

JK,n = m−2dmax
n

0∑
s=1−pn

( 0∑
t=s

ψt−s

(
d
( t+ pn

n

)))2 ∫ −K

∞
1
( s

mn
< u ≤ s+ 1

mn

)
du

≤ Cm−2dmax−1
n

∑
−pn≤s≤−Kmn

( 0∑
t=s

(t− s+ 1)d(
t+pn

n
)−1

)2

.

According to Assumption (A.4),

d
( t+ pn

n

)
≤

dmax −∆
( |t|
n

)γ
, −ϵ̄n < t ≤ 0,

dmax − δ(ϵ̄), −pn ≤ t ≤ −ϵ̄n,
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for some 0 < ∆ < ∆−, sufficiently small ϵ̄ > 0 and sufficiently large n. Therefore,

JK,n = Cm−2dmax−1
n

∑
−pn≤s≤−Kmn

{( ∑
−pn≤t≤−ϵ̄n

+
∑

−ϵ̄n<t≤0

)
(t− s+ 1)d(

t+pn
n

)−11(t ≥ s)

}2

≤ C(J ′
K,n + J ′′

K,n),

where

J ′
K,n := m−2dmax−1

n

∑
−pn≤s≤−Kmn

( ∑
−pn≤t≤−ϵ̄n

(t− s+ 1)d(
t+pn

n
)−11(t ≥ s)

)2

,

J ′′
K,n := m−2dmax−1

n

∑
−pn≤s≤−Kmn

( ∑
−ϵ̄n<t≤0

(t− s+ 1)dmax−∆(
|t|
n
)γ−11(t ≥ s)

)2

.

Clearly, since 0 < δ(ϵ̄) < dmax,

J ′
K,n ≤ m−2dmax−1

n

∑
−n≤s≤0

( ∑
s≤t≤0

(t− s+ 1)dmax−δ(ϵ̄)−1

)2

,

≤ Cm−2dmax−1
n

n∑
s=0

(s+ 1)2(dmax−δ(ϵ̄))

≤ C(n/mn)
2dmax+1n−2δ(ϵ̄) = o(1).

Next,

J ′′
K,n ≤ m−2dmax−1

n

∑
−n≤s≤−Kmn

( ∑
s≤t≤0

(t− s+ 1)dmax−∆(
|t|
n
)γ−1

)2

=
∑

Kmn+1≤s≤n+1

1

m3
n

( ∑
0≤t<s

(s− t

mn

)dmax−1
exp

{
−∆

( t

mn

)γ logmn + log( s−t
mn

)

log n

})2

.

Split the last inner sum into two sums according to whether s− t ≥ mn or 1 ≤ s− t < mn

holds and denote the corresponding terms by I ′K,n and I ′′K,n so that J ′′
K,n ≤ C(I ′K,n + I ′′K,n).

Since logmn

logn > 1/2 for all n large enough, we obtain that

I ′K,n ≤
∫ ∞

K
ds

(∫ s

0
(s− t)dmax−1e−

1
2
∆tγdt

)2

=

∫ ∞

0

∫ ∞

0
e−

1
2
∆tγ1 e−

1
2
∆tγ2 gK(t1, t2)dt1dt2,

where

gK(t1, t2) :=

∫ ∞

K∨t1∨t2
(s− t1)

dmax−1(s− t2)
dmax−1ds

≤
∫ ∞

K∨t1∨t2
(s− t1 ∨ t2)2dmax−2ds→ 0 as K → ∞
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for any t1, t2 ≥ 0 fixed, and gK(t1, t2) ≤ C|t1 − t2|2dmax−1 =: g(t1, t2), t1 ̸= t2, where∫∞
0

∫∞
0 e−

1
2
∆tγ1 e−

1
2
∆tγ2 g(t1, t2)dt1dt2 < ∞. Therefore, by the dominated convergence theo-

rem, I ′K,n → 0 (K → ∞) uniformly in n.

Consider I ′′K,n. Since t
γ > sγ

2 for s− t < mn and s > Kmn, with K large enough, so

I ′′K,n ≤ m−2dmax−1
n

n+1∑
s=Kmn

( ∑
s−mn≤t<s

(s− t)dmax−1− 1
2
∆( s

n
)γ
)2

≤ Cm−2dmax−1
n

n+1∑
s=Kmn

m
2dmax−∆( s

n
)γ

n

= Cm−1
n

n+1∑
s=Kmn

e−∆( s
n
)γ logmn

= Cm−1
n

n+1∑
s=Kmn

e
−∆( s

mn
)γ logmn

logn

≤ C

∫ ∞

K
e−

1
2
∆uγ

du → 0 (K → ∞)

uniformly in n for all n large enough. This proves (3.16), (3.9) and the finite-dimensional

convergence in (3.3).

To prove the tightness in (3.3), we shall verify the Kolmogorov criterion: there exists a

constant C > 0 such that for any −∞ < τ1 < τ2 <∞

E
[
Sn

(
τmax +

τ2

log1/γ n

)
− Sn

(
τmax +

τ1

log1/γ n

)]2
≤ Cm1+2dmax

n (τ2 − τ1)
1+2dmax ,(3.17)

cf. (3.7).

Let qn(τ1, τ2) denote the left hand side of (3.17). Then qn(τ1, τ2) =
∑⌊nτmax+mnτ2⌋

t1,t2=⌊nτmax+mnτ1⌋+1

ρ(t1, t2), where ρ(t1, t2) :=
∑∞

s=1 ψt1−s(dt1)ψt2−s(dt2) is the covariance function of {Xt}
in (1.3), with the convention ψt−s(dt) := 0 (s > t). Using (2.4), we obtain |ρ(t1, t2)| ≤
C(|t1− t2|+1)2dmax−1 and therefore (3.17) easily follows. This ends the proof of Theorem 5.

�

Next, we discuss the case of time-varying fractionally integrated process {Xa
t } in (1.5).

We shall need to strengthen Assumption (A.4) with the following condition: there exist a

constant C <∞ and ϵ > 0 such that for any 0 < u1, u2 < ϵ

|d(τmax ± u1)− d(τmax ± u2)| ≤ C|u1 − u2|(uγ−1
1 + uγ−1

2 ). (3.18)

Note that condition (3.18) is satisfied if d(·) is differentiable in a neighborhood of τmax, with

exception of the point τ = τmax itself, and the derivative satisfies |d′(τ)| ≤ C|τ−τmax|γ−1. In

particular, condition (3.18) is satisfied by the function d(τ ±u) = dmax−∆±u
γ , u,∆± > 0.
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Theorem 7 Let d(τ), τ ∈ [0, 1] satisfy Assumption (A.4) and condition (3.18). Let {Xa
t } be

a time-varying fractionally integrated processes in (1.5) corresponding to the slowly chang-

ing memory parameter dt = d(t/n) and martingale difference innovations as in Theorem

5. Then the statement (3.3) of Theorem 5 holds with Sn replaced by Sa
n and κ(dmax) =

1/Γ(dmax).

Proof. For dt = d(t/n), the coefficients at−s(t), bt−s(t) in (1.6) can be rewritten as

at−s(t) :=
d( t−1

n )

1
·
d( t−2

n ) + 1

2
·
d( t−3

n ) + 2

3
· · ·

d( sn)− 1 + t− s

t− s
.

Let ψt−s(d) be FARIMA(0, d, 0) coefficients in (1.4). Then

ψt−s

(
d
( t
n

))
=

d( t
n)

1
·
d( t

n) + 1

2
· · ·

d( t
n)− 1 + t− s

t− s
, s < t.

Consider the ratio

Θa(t, s) :=
at−s(t)

ψt−s

(
d( t

n)
) , s ≤ t.

Letmn, pn be defined as in (3.8). We shall prove that for any t, s in aO(mn)−”neighborhood”

of pn = ⌊nτmax⌋ the above ratio tends to 1: for any K <∞

sup
t,s∈Mn,K

|Θa(t, s)− 1| → 0, (3.19)

where Mn,K := {(t, s) : |t − pn| ≤ Kmn, |s − pn| ≤ Kmn, s ≤ t}. We shall also need the

following dominating bound:

sup
|t−pn|≤Kmn,1≤s≤t

|Θa(t, s)| ≤ C. (3.20)

Consider (3.19). We have

Θa(t, s) =
t−1∏
k=s

(
1 + λat,k

)
, λat,k :=

d( kn)− d( t
n)

d( t
n) + t− k − 1

.

From Assumption (A.4) and condition (3.18) we have that for all sufficiently large n and

any pn < s < t ≤ pn +Kmn it holds

t−1∑
k=s

|λat,k| ≤ C

t−1∑
k=s

∣∣d( k
n

)
− d

(
t
n

)∣∣
1 + |t− k − 1|

≤ Cn−γ
t−1∑
k=s

((k − pn)
γ−1 + (t− pn)

γ−1)(t− k)

1 + |t− k − 1|

≤ Cn−γ
pn+Kmn∑
k=pn+1

((k − pn)
γ−1 + (t− pn)

γ−1)

≤ CKγ
(mn

n

)γ
= o(1). (3.21)
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Note the last bound applies for any γ > 0. Similar argument leads to the same bound for

the sum
∑t−1

k=s |λat,k| in the case pn − Kmn ≤ s < t < pn. In the case pn − Kmn ≤ s ≤
pn < t ≤ pn + Kmn, split

∑t−1
k=s |λat,k| =

∑pn
k=s |λ

a
t,k| +

∑t−1
k=pn+1 |λat,k| =: Λ1 + Λ2, where

Λ2 ≤ CKγ
(
mn
n

)γ
= o(1) as above, while

Λ1 ≤ Cn−γ
pn∑
k=s

(pn − k)γ + (t− pn)
γ

1 + |t− k − 1|
=: Λ11 + Λ12

according to Assumption (A.4). Here, Λ11 ≤ CKγ
(
mn
n

)γ
and the same bound follows easily

for Λ12 in the case γ ≥ 1. Consider Λ12 for 0 < γ < 1. Then

Λ12 ≤ C
( t− pn

n

)γ
pn−1∑
k=s

1

t− k − 1

≤ C
( t− pn

n

)γ
log

(
1 +

pn − s− 1

t− pn

)
≤ C

(Kmn

n

)γ( t− pn
Kmn

)γ
log

(
1 +

Kmn

t− pn

)
≤ C

(Kmn

n

)γ

since supx>0 x
γ log(1 + 1

x) ≤ C. This proves the bound in (3.21) uniformly in |t − pn| ≤
Kmn, |s − pn| ≤ Kmn. Now, using (3.21) and the telescoping identity

∏
k ak −

∏
k bk =∑

k(ak − bk)
∏

j<k aj
∏

j>k bk, we obtain

|Θa(t, s)− 1| ≤
t−1∑
k=s

|λat,k|
k−1∏
j=s

(1 + |λat,j |)

≤
t−1∑
k=s

|λat,k| exp
{ k−1∑

j=s

|λat,j |
}

≤ C
t−1∑
k=s

|λat,k| = o(1),

proving (3.19).

Consider (3.20). From assumptions (3.1) and (3.2) we infer that for any K > 0 there

exists K ′ > 0 such that the following inequalities

d
(k
n

)
< d

( t
n

)
, ∀ |t− pn| ≤ Kmn, ∀ 1 ≤ k ≤ pn −K ′mn (3.22)

are satisfied. (Indeed, the required K ′ can be easily determined by K ′ = 2K(∆+/∆−)
1/γ ,

for all n large enough.) Next, write

|Θa(t, s)| =
∏

s≤k<pn−K′mn

∣∣1 + λat,k
∣∣ ∏
pn−K′mn≤j<t

∣∣1 + λat,j
∣∣.

Here, the first product on the r.h.s. is bounded by 1 since −1 < λat,k < 0 in view of (3.22)

and the definition of λat,k. The second product tends to 1 as n → ∞ for each K ′ < ∞
according to (3.19). This proves (3.20).

With (3.19)–(3.20) in mind, the proof of Theorem 7 follows from the proof of Theorem 5,

with minor modifications. �
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Remark 4 The proof of Theorem 7 reduces the study of Sa
n to that of Sn in Theorem 5

by showing that the ratio Θa(t, s) of the corresponding coefficients tends to 1 (see (3.19)).

The last fact, as well as the statement of Theorem 7, is not true for the process {Xb
t } (under

the same assumptions on d(·)) since the corresponding ratio Θb(t, s) := bt−s(t)/ψt−s

(
d( t

n)
)

tends to a different limit:

Θb(t, s) → e∆sgn(v)|v|γ−∆sgn(u)|u|γ , as (t− pn)/mn → v, (s− pn)/mn → u. (3.23)

The limit in (3.23) can be shown for any u < v fixed, by writing Θb(t, s) =
(
d( t−1

n )/d( t
n)
)∏t−2

k=s

(
1 + λbt,s,k

)
and decomposing the λbt,s,k’s as follows:

λbt,s,k :=
d( kn)− d( t

n)

d( t
n) + k − s+ 1

=
d( kn)− d( sn)

d( t
n) + k − s+ 1

+
d( sn)− d( t

n)

d( t
n) + k − s+ 1

=: λ′t,s,k + λ′′t,s,k.

Here,
∑t−2

k=s |λ′t,s,k| = o(1) similarly to (3.21) but
∑t−2

k=s λ
′′
t,s,k ∼ (d( sn) − d( t

n)) log(t − s)

tends to the r.h.s. of (3.23). The above discussion suggests that the partial sums limit of( log1/γ n
n

)dmax+1/2
Sb
n

(
τmax +

τ
log1/γ n

)
might be written as

U b(τ) := κ(dmax)

∫ τ

−∞
e−∆sgn(u)|u|γη(du)

∫ τ

u
(v − u)dmax−1dv.

Note that, contrary to the process U in (3.4), the process U b is well-defined for any dmax > 0

provided ∆− > 0.

The proofs of Theorems 5 and 7 yield the following corollary.

Corollary 8 (i) Let the conditions of Theorem 5 be satisfied. Then

( log1/γ n
n

)dmax+1/2
Sn(τ) →f.d.d.


0, τ < τmax,

U(0), τ = τmax,

U(+∞), τ > τmax,

(3.24)

where {U(τ)} is defined in (3.4). Moreover,( log1/γ n
n

)dmax+1/2
∫ 1

0
Sn(τ)dτ →law (1− τmax)U(+∞), (3.25)( log1/γ n

n

)2dmax+1
∫ 1

0
S2
n(τ)dτ →law (1− τmax)U(+∞)2. (3.26)

(ii) Let the conditions of Theorem 7 be satisfied. Then relations (3.24), (3.25), (3.26) hold

with Sn replaced by Sa
n.
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Bružaitė, K., Vaičiulis, M., 2005. Asymptotic independence of distant partial sums of

linear process. Lithuanian Mathematical Journal 45, 387–404.
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Csörgő, M. and Horváth, L., 1993. Weighted Approximations in Probability and Statistics.

Wiley, Chichester.

Davidson, J., Hashimzade, N., 2009. Type I and type II fractional Brownian motions: A

reconsideration. Computational Statistics and Data Analysis 53, 2089–2106.

Davydov, Y., 1970. The invariance principle for stationary process. Theory of Probability

and its Applications 15, 145–180.

Doukhan, P., Lang, G., Surgailis, D., 2007. Randomly fractionally integrated processes.

Lithuanian Mathematical Journal 47, 3–28.

Drees, H., 2002. Tail empirical processes under mixing conditions. In: Dehling, H. G.,

Mikosch, T., Sorensen, M. (Eds.), Empirical Process Techniques for Dependent Data.
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