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Abstract

This paper studies whether term structure models for US nominal bond yields should enforce

the zero lower bound through a quadratic policy rate or a shadow rate. We address the question by

estimating quadratic term structure models (QTSMs) and shadow rate models using the sequential

regression (SR) approach. Our �ndings suggest that QTSMs outperform shadow rate models in

terms of in-sample �t with two and three latent factors, but not when a fourth factor is included

to properly �t short-term yields. A fourth factor is also required in both models to match the

slope coe¢ cient in the Campbell-Shiller regressions for excess returns. Importantly, only shadow
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risk-adjusted, suggesting that the Q dynamics are best captured by shadow rate models.
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1 Introduction

Nominal bond yields have reached historically low levels during the recent �nancial crisis, with short

rates at or close to the zero lower bound (ZLB) in several countries. This development has highlighted

a well-known shortcoming of a¢ ne term structure models (ATSMs) as they generally are unable to

ensure positive bond yields. One way to account for the ZLB is to abandon the a¢ ne speci�cation

of the policy rate and let this rate be quadratic in the pricing factors with appropriate restrictions.

Adopting this extension leads to the well-known class of quadratic term structure models (QTSMs)

studied in Ahn, Dittmar & Gallant (2002), Leippold & Wu (2002), Realdon (2006) among others.

Another way to enforce the ZLB is to restrict policy rates to be non-negative by the max-function as

in the class of shadow rate models suggested by Black (1995). The two ways to account for the ZLB

imply di¤erent dynamics for bond yields but little is currently known about their relative performance

on US bond yields.1 That is, should dynamic term structure models (DTSMs) for US bond yields

enforce the ZLB by an appropriately speci�ed quadratic policy rate or by relying on a shadow rate?

The aim of this paper is to address this question by comparing the in- and out-of-sample perfor-

mance of QTSMs and shadow rate models with two, three, and four pricing factors on postwar US

data. In doing so we face two well-known challenges in the term structure literature. The �rst relates

to multi-factor shadow rate models where no closed-form solution is available for bond yields, and

we therefore suggest a fourth-order perturbation approximation where the max-function is replaced

by a polynomial approximation. To correct for potential pricing errors induced by the approximated

max-function, a novel bias-correction to the perturbation solution is derived from bond yields under

perfect foresight. We provide a simple recursive implementation of our perturbation approximation,

allowing us to obtain solutions to monthly three- and four-factor models with a 10-year interest rate in

about 1.7 and 3.7 seconds, respectively. These approximations are shown to be highly accurate with

the root mean squared pricing errors around 5 annualized basis points across all maturities.

The second challenge relates to estimation of non-linear DTSMs with latent pricing factors as

implied by QTSMs and shadow rate models. One possibility is to approximate the unknown likelihood

function for these models by sequential Monte Carlo methods as in Doucet, de Freitas & Gordon (2001),

but this procedure is very time consuming for multi-factor DTSMs and therefore rarely attempted.

1Kim & Singleton (2012) explore a similar question on Japanese bond yields in models with two latent pricing factors.
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A computational more feasible alternative is to use a non-linear extension of the Kalman �lter and

a quasi-maximum likelihood (QML) approach, but its asymptotic properties are generally unknown.2

We overcome these di¢ culties by using the sequential regression (SR) approach by Andreasen &

Christensen (2013), where latent pricing factors are obtained by cross-section regressions and model

parameters are found by a three-step moment-based estimation procedure. The SR approach gives

consistent and asymptotically normal estimates and these properties hold under weaker restrictions

than typically imposed in likelihood-based inference for DTSMs. For instance, the SR approach allows

measurement errors in bond yields to display heteroskedasticity and correlation in both the cross-

section and time series dimension. This estimation procedure is particularly well-suited in our context

because the considered QTSMs and shadow rate models only di¤er in their risk-neutral distributions,

which may be estimated independently of their physical distributions in the SR approach. Hence,

the ability of these models to match in-sample bond yields reported below hold for any considered

functional form of the market price of risk. We �nally highlight the computational e¢ ciency of the SR

approach which allow us to estimate three- and four-factor QTSMs in about 10 to 20 minutes. The

estimation time for the shadow rate models based on our perturbation approximation is slightly longer

but still feasible. Hence, the framework we suggest for solving and estimating DTSMs enforcing the

ZLB remains conveniently tractable.

We highlight the following results from our work using monthly US data from July 1961 to May

2013. First, a quadratic policy rate is the best way to enforce the ZLB in two- and three-factor models

when measured by the in-sample �t. On the other hand, in four-factor models, a quadratic policy

rate and a shadow rate speci�cation deliver broadly the same �t of bond yields, and we are therefore

unable to rank the two mechanisms for enforcing the ZLB in this case. Second, the QTSM requires

four pricing factors to match the unconditional �rst and second moments of bond yields, whereas

only three factors are required in the shadow rate model. We also �nd that both models rely on

four pricing factors to match the dynamics of bond yields under the P measure and hence pass the

LPY(i) test of Dai & Singleton (2002). Importantly, only shadow rate models pass the closely related

2Recent applications of the procedure in DTSMs enforcing the ZLB may be found in Ichiue & Ueno (2007), Kim &
Singleton (2012), Bauer & Rudebusch (2013), Christensen & Rudebusch (2013), and Ichiue & Ueno (2013). For some
ATSMs without the ZLB restriction, the �ndings by Duan & Simonato (1999) and de Jong (2000) suggest that the bias
in a QML approach based on the extended Kalman �lter may be small. We refer to Andreasen (Forthcoming) for a
discussion of the asymptotic properties related to a QML approach when estimating non-linear state space models.
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LPY(ii) test, suggesting that the Q dynamics is best captured by a shadow rate speci�cation. Thrid,

the shadow rate model appears to o¤er the best forecasting performance, where it out-performs a

benchmark Gaussian ATSM at short maturity and the QTSM at longer maturities. In conclusion, our

work therefore suggests that DTSMs for US bond yields should enforce the ZLB by adopting a shadow

rate speci�cation instead of a quadratic policy rate, possibly using four pricing factors.

The rest of the paper is organized as follows. Section 2 presents the considered DTSMs, and

Section 3 introduces the perturbation method for computing bond yiels in a general class of DTSMs,

including shadow rate models. We describe how the considered DTSMs may be estimated by the SR

approach in Section 4. In-sample results are reported in Section 5 and the out-of-sample results are

presented in Section 6. Concluding comments are provided in Section 7.

2 Dynamic term structure models

We start by describing the Gaussian ATSM in Section 2.1 which serves as our benchmark. The next

two subsections present a QTSM and a shadow rate model, respectively, where we restrict focus to

pricing factors with Gaussian distributions under both the risk-neutral and physical measure as in the

Gaussian ATSM. That is, we consider an a¢ ne speci�cation for the market price of risk. We do not

study the multivariate version of the model by Cox, Ingersoll & Ross (1985) with independent pricing

factors or its extension with correlated factors as in the Am (m) model by Dai & Singleton (2000),

although such models also account the ZLB. The main reason being that the Am (m) model is unable

to reproduce key properties of term premia in the US, whereas these properties are nicely matched by

the Gaussian ATSM as shown by Dai & Singleton (2002). In addition, Kim & Singleton (2012) �nd

that the in-sample �t of the QTSM and the shadow rate model clearly outperforms the Am (m) model

on Japanese bond yields.

2.1 The benchmark ATSM

The discrete-time Gaussian ATSM is characterized by three equations. The �rst speci�es the one-

period risk-free interest rate rt to be a¢ ne in nx pricing factors xt, i.e.

rt = �+ �
0xt; (1)
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where � is a scalar and � is an nx � 1 vector. This speci�cation is typically motivated by referring

to some type of Taylor rule as in Clarida, Gali & Gertler (2000). The second equation describes the

dynamics of the pricing factors under the risk-neutral measure Q as a vector autoregressive (VAR)

process

xt+1 = ��+ (I��)xt +�"Qt+1; (2)

where "Qt+1 � NID (0; I). The mean level of the pricing factor is controlled by � of dimension nx� 1,

while the persistence and conditional volatility of the factors are determined by the nx � nx matrices

� and �, respectively. In the absence of arbitrage, the price at time t of an k-period zero-coupon

bond is given by Pt;k = EQt [exp f�rtgPt+1;k�1]. Given the assumptions in (1) and (2), bond prices

are exponentially a¢ ne in the factors, i.e.

Pt;k = exp
�
Ak +B

0
kxt
	

(3)

for k = 1; 2; :::;K, where the recursive formulae for Ak and Bk are easily derived.

The �nal equation speci�es the functional form for the market price of risk f (xt) with dimension

nx � 1. The relationship between the physical measure P and the Q measure is given by "Qt+1 =

"Pt+1 + f (xt), and the factor dynamics under P are therefore given by

xt+1 = ��+(I��)xt +�f (xt) +�"Pt+1; (4)

where "Pt+1 � NID (0; I). To obtain an a¢ ne process for the pricing factors under P, we let f (xt) =

��1 (f0 + f1xt), where f0 has dimension nx� 1 and f1 is an nx� nx matrix. The P dynamics are then

given by

xt+1 = ��+ f0+(I��+ f1)xt +�"Pt+1: (5)

The pricing factors are considered to be latent (i.e. unobserved) and a set of normalization re-

strictions are needed to identify the model. We therefore require i) � = 1, ii) � = 0, iii) � to be

diagonal, and iv) � to be triangular.3 This identi�cation scheme constrains the Q dynamics for the

pricing factors whereas the P dynamics are unrestricted. The latter is convenient when the model is
3There exist other normalization schemes, for instance the one recently suggested by Joslin, Singleton & Zhu (2011).

We prefer the considered normalization scheme because it is closely related to the one adopted for QTSMs.
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estimated by the SR approach, as we explain in Section 4.

2.2 The QTSM

The discrete-time QTSM di¤ers from the Gaussian ATSM by letting the policy rate be quadratic in

the pricing factors, i.e.

rt = �+ �
0xt + x

0
t	xt; (6)

where 	 is a symmetric nx � nx matrix. This speci�cation may also be motivated from a Taylor

rule if it displays time-varying parameters as considered in Ang, Boivin, Dong & Loo-Kung (2011).

Introducing quadratic terms in the policy rate is useful because they allow the model to enforce the

ZLB. The non-negativity conditions for bond yields are i) � � 1
4�

0	�1� and ii) 	 to be positive

semi-de�nite (Realdon (2006)). It is worth noting that this way of imposing the ZLB may be applied

independently of the chosen dynamics for the pricing factors, and a quadratic policy rule therefore

serves as a mechanism to enforce the ZLB.

Given the policy rate in (6), it is convenient to adopt the same speci�cation for the pricing factors

as in (2), because it gives the closed-form solution for zero-coupon bonds

Pt;k = exp
n
~Ak + ~B

0
kxt + x

0
t
~Ckxt

o
(7)

for k = 1; 2; :::;K, with the recursive formulae for ~Ak, ~Bk, and ~Ck derived in Realdon (2006). Hence,

the quadratic terms in (6) imply that all bond yields yt;k � � 1
k logPt;k are quadratic in the pricing

factors and bond yields therefore display heteroskedasticity.

For comparability with the benchmark ATSM, we maintain the a¢ ne speci�cation for the market

price of risk, meaning that the P dynamics for the pricing factors in the QTSM are given by (5). As in

the benchmark ATSM, not all parameters are identi�ed in the QTSM with latent factors. We therefore

follow Ahn et al. (2002) and impose the restrictions: i) 	 is symmetric with diagonal elements equal

to one, ii) � � 0, iii) � = 0, iv) � is diagonal, and v) � is triangular. This normalization scheme

implies an unrestricted P dynamics for the pricing factors and that the ZLB may be enforced by letting

� = 0.
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2.3 The shadow rate model

The ZLB may also be enforced in DTSMs by introducing a shadow interest rate s (xt) as suggested

by Black (1995).4 This shadow rate is unconstrained by the ZLB and may therefore attain negative

values. Absent any transaction and storing costs for money, Black (1995) observes that the nominal

interest rate cannot be negative because investors may always decide to hold cash. In other words,

the nominal interest rate has an option element. This argument leads to the following speci�cation

rt = max (0; s (xt)) ; (8)

where the actual policy rate rt is the non-negative part of the shadow rate. As with the quadratic

policy rule, the concept of a shadow rate serves as a mechanism to enforce the ZLB and may be applied

independently of the functional form for s (xt) and the considered factor dynamics.

For comparability with the benchmark ATSM, we let the shadow rate be a¢ ne in the pricing

factors, i.e.

s (xt) = �+ �
0xt; (9)

but other speci�cations may also be considered (see for instance Kim & Singleton (2012)). For the

same reason, we also restrict focus to an a¢ ne process for the pricing factors under the risk-neutral

and physical measure as in the benchmark ATSM, but other speci�cations could be considered. That

is, we impose (4) and (5) in our shadow rate model. Finally, the identi�cation conditions for the

shadow rate model are identical to those for the benchmark ATSM in Section 2.1.

3 A perturbation approximation to shadow rate models

Shadow rate models do not attain closed-form expressions for bond prices, except for one-factor models

with a Gaussian or square-root process driving the shadow rate (Gorovoi & Linetsky (2004)). Given

that one-factor models typically are considered too stylized, numerical approximations are therefore

needed when studying multi-factor shadow rate models. The methods used in the literature include

i) lattices (Ichiue & Ueno (2007)), ii) �nite-di¤erence methods (Kim & Singleton (2012)), iii) Monte

Carlo integration (Bauer & Rudebusch (2013)), iv) an option pricing approximation (Krippner (2012),

4The idea of considering a shadow rate is also brie�y mentioned in Rogers (1995).
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Christensen & Rudebusch (2013)), and v) ignoring Jensen�s inequality term to solve a Gaussian model

by a truncated normal distribution (Ichiue & Ueno (2013)). Each approximation method has its pros

and cons and no consensus has so far emerged on the preferred method.

The present paper introduces an entirely di¤erent approximation procedure as we suggest a per-

turbation method to compute bond prices by Taylor series expansions around the deterministic steady

state - often equivalent to the unconditional mean.5 The perturbation method is attractive because it

delivers high accuracy and remains computationally tractable even with three and four pricing factors.

We proceed as follows. Section 3.1 introduces the considered class of DTSMs, and Section 3.2

derives the fourth-order Taylor series approximation to bond prices. Shadow rate models are not

di¤erentiable everywhere as required to apply the perturbation method, and we therefore suggest

replacing the max-function by a fully di¤erentiable function in Section 3.3. To correct for potential

pricing errors induced by the approximated max-function, Section 3.3 also derives a bias correction

to the perturbation solution by considering bond yields under perfect foresight. Section 3.4 �nally

describes how to compute conditional expectations of bond yields and hence term premia by the

perturbation method.

3.1 A class of DTSMs

The evolution of the pricing factors in the considered class of DTSMs is given by

xt+1 = h (xt) + ���t+1; (10)

where �t+1 has dimension n� � 1. These innovations are assumed to be independent and identically

distributed with mean zero and covariance matrix I, �t+1 s IID (0; I). It is also assumed that each

element of �t+1 has a symmetric probability distribution with �nite fourth moment.6 We impose

no further restrictions on the innovations, meaning that �t+1 may be non-Gaussian. The statistical

properties of �t+1 may be speci�ed under any probability measure. In most cases, however, the

Q measure is preferred to the P measure as it implies higher accuracy because the perturbation
5This approximation method is widely used in stochastic consumption-based equilibrium models (see Judd & Guu

(1997), Schmitt-Grohé & Uribe (2004), Aruoba, Fernandez-Villaverde & Rubio-Ramirez (2006), among others).
6Symmetric probability distributions imply that derivatives of bond prices taken k times with respect to x and n times

with respect to the perturbation parameter � are zero when n is an uneven integer. It is, however, straightforward to
allow for non-symmetric probability distributions in the perturbation method and account for skewness or rare disasters
(see for instance Andreasen (2012)).
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approximation is computed at the deterministic steady state. For instance, simple algebra shows that

a second-order approximation under the Q measure reproduces the exact solution for bond prices in

the benchmark ATSM, whereas a fourth-order expansion is needed under the P measure.

The matrix � has dimension nx � n� and denotes the square root of the covariance matrix for the

innovations. An auxiliary parameter � � 0 scales this matrix and allow us to switch between the

stochastic model (� = 1) and the deterministic model (� = 0). A de�ning feature of the perturbation

method is to compute the Taylor series expansions in xt and �. Although the approximation is

carried out at the deterministic steady state where � = 0 and xt+1 = xt = xss, the derived Taylor

series expansions are still able to capture e¤ects of uncertainty by letting � = 1.7

The function h (xt) in (10) may be non-linear and is required to be four times di¤erentiable for

all xt 2 Rnx in order to derive the fourth-order Taylor series expansion for bond prices. No further

restrictions are imposed on the h-function, meaning that xt may be non-stationary. Additional lags of

the pricing factors may be included in (10) by an appropriate extension of xt. Similarly, the assumption

that innovations only enter linearly in (10) is also without loss of generality, because a system with

non-linearities between pricing factors and innovations may be rewritten into an extended system with

only linear innovations.8 Hence, (10) also accommodates factor dynamics with time-varying volatility,

for instance when speci�ed by stochastic volatility or GARCH.

The fundamental asset pricing equation gives the well-known recursive expression for zero-coupon

bond prices at time t with k periods to maturity

Pt;k = Et [M (xt;xt+1)Pt+1;k�1] : (11)

Here, Et is the conditional expectation given information available at time t and under the same prob-

ability measure as the innovations in (10). The stochastic discount factor is denoted by M (xt;xt+1)

and required to be four times di¤erentiable for all (xt;xt+1) 2 Rnx � Rnx to derive the fourth-order

Taylor series expansion. As an illustration, consider the stochastic discount factor for the benchmark

7Note that the steady state is a �xed-point in (10) and that this point corresponds to the unconditional mean in
linear systems.

8Two examples are provided in Andreasen, Fernandez-Villaverde & Rubio-Ramirez (2013)
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ATSM, which is exp f�rtg under the Q measure and

M (xt;xt+1) = exp

�
�rt �

1

2
(f0 + f1xt)

0 (f0 + f1xt)� (f0 + f1xt)0 ��t+1
�

(12)

when the pricing is done under the P measure.

The true solution for bond prices in the class of DTSMs considered is Pt;k = Pk (xt; �). The

perturbation method approximates these unknown functions by Taylor series expansions around the

deterministic steady state. When applying these approximations, it is often useful to adopt a log-

transformation of bond prices as continuously compounded interest rates are linear functions of logPt;k.

We therefore re-write (11) as

exp
�
pt;k
�
= Et

h
M (xt;xt+1) exp

�
pt+1;k�1

�i
(13)

with pt;k � logPt;k and apply (13) for the approximation. A fourth-order Taylor series expansion of

pt;k in xt and � is given by

pk (xt; �) t pk (xss; 0) +
Pnx
�1=1

�
pkx (�1) +

3

6
pk��x (�1)�

2

�
�xt (�1) (14)

+
1

2

Pnx
�1=1

Pnx
�2=1

�
pkxx (�1; �2) +

6

24
pk��xx (�1; �2)�

2

�
�xt (�1) �xt (�2)

+
1

6

Pnx
�1=1

Pnx
�2=1

Pnx
�3=1

pkxxx (�1; �2; �3) �xt (�1) �xt (�2) �xt (�3)

+
1

6

Pnx
�1=1

Pnx
�2=1

Pnx
�3=1

Pnx
�4=1

pkxxxx (�1; �2; �3; �4) �xt (�1) �xt (�2) �xt (�3) �xt (�4)

+
1

2
pk���

2 +
1

24
pk�����

4

where �xt� xt � xss for k = 1; 2; :::;K.9 Here, pk�jxn refers to the derivative of p
t;k with respect to �

taken j times and with respect to xt taken n times. These derivatives are evaluated at the deterministic

steady state. Due to the log-transformation of bond prices, the perturbation approximation to bond

yields is simply given by

yappk (xt) = �
1

k
pk (xt; �) : (15)

9Only non-zero terms are included in (14). See Schmitt-Grohé & Uribe (2004) and Andreasen (2012) for further
details.
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3.2 Computing the perturbation approximation to DTSMs

One possibility for computing the unknown terms in (14) uses (10) and (13) for k = 1; 2; :::;K to

jointly �nd all bond price derivatives by standard solution algorithms for the perturbation method.10

In the context of DTSMs, this procedure is not numerically e¢ cient because the h-function is taken

to be unknown and the recursive relationship between bond prices is ignored. We therefore present a

fully e¢ cient two-step solution algorithm tailored to the considered class of DTSMs.

Step 1: The �rst step computes all derivatives for bond prices with one period to maturity. Letting

k = 1 in (13), we get

pt;1 = log (Et [M (xt;xt+1)� 1]) ; (16)

as zero-coupon bonds pay one unit of currency at maturity. When the pricing is done under Q, the

stochastic discount factor does not depend on xt+1 and (16) simpli�es to pt;1 = log (M (xt)). The

terms p1x, p
1
xx, p

1
xxx, and p

1
xxxx therefore follow by simple di¤erentiation, and all derivatives with

respect to the perturbation parameter � are zero, i.e. p1�� = 0, p
1
���� = 0, p

1
��x = 0, and p

1
��xx = 0.

11

If the pricing is done under under P, we suggest to specify the probability distribution of �t+1 and

manually compute Et [M (xt;xt+1)]. Based on this expression, all required bond price derivatives for

p1 then follow by simple di¤erentiation.

Step 2: The second step uses the perturbation method to recursively compute the remaining bond

price derivatives. Based on (10) and (13) for a given k, we de�ne the function

F k (xt; �) � Et[exp
�
pt;k (xt; �)

�
�M

�
h (xt; �) + ���t+1;xt

�
(17)

� exp
�
pt+1;k�1

�
h (xt; �) + ���t+1; �

��
]:

The relationship for bond prices in (13) always holds, meaning that F k (xt; �) = 0 and F kxi�j (x; �) = 0

for all values of x and �. For consumption-based equilibrium models, Andreasen & Zabczyk (2010)

show that these conditions determine the remaining bond price derivatives up to third order. The

same property clearly holds for DTSMs, and we provide the expressions for bond price derivatives up

10They include Dynare and Dynare++ by Kamenik (2005), Perturbation AIM by Swanson, Anderson & Levin (2005),
and codes accompanying Schmitt-Grohé & Uribe (2004).
11When computing p1x, p

1
xx, p

1
xxx, and p

1
xxxx from pt;1 = log (M (xt)) we recommend using software for symbolic

di¤erentiation. In MATLAB, this is carried out by using the "di¤" or "jacobian" function.
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to fourth order in Appendix A. These Ricatti equations have a simple recursive structure and the

remaining bond price derivatives are therefore easily obtained by simple summations.12

3.3 The perturbation approximation and shadow rate models

Additional considerations are needed when applying the perturbation method to shadow rate models

because the max-function in the policy rate and hence M (xt;xt+1) are not di¤erentiable everywhere.

We address this problem by replacing the max-function in (8) by a fully di¤erentiable approximation

to this function. The considered approximation is obtained from a fourth-order polynomial where

parameters are calibrated to match the max-function in a relevant interval for the policy rate. We let

dmax frt; 0g denote the approximated max-function which is displayed in Figure 1.13
To correct for potential pricing errors induced by the approximated max-function, we derive a novel

bias correction to the perturbation solution from bond yields under perfect foresight.14 To present our

bias correction, let eyk (xt) denote bond yields under perfect foresight. For the shadow rate model, we
have

eyk (xt) = 1

k

�
kP
i=1
max

�
�+ �0xt+i; 0

	�
(18)

for k = 1; 2; :::;K, where

xt+i =
�
��1

�
I� (I��)i

��
��+ (I��)i xt: (19)

Let eyappk (xt) denote bond yields under perfect foresight when using the approximated max-functiondmax frt; 0g. Its value in the the shadow rate model is given by
eyappk (xt) =

1

k

�
kP
i=1

dmax��+ �0xt+i; 0	� (20)

12The generality of the considered class of DTSMs imply somewhat involved expressions for several third- and fourth-
order derivatives in Appendix A. These terms greatly simplify when i) the pricing under Q as all derivatives ofM (xt;xt+1)
with respect to xt+1 are zero and/or ii) h (xt) is linear with hxx = 0, hxxx = 0, and hxxxx = 0.
13Other functions may be applied to approximate the max-function, for instance f (r) = r exp(nr)=(exp(nr) + 1)

which is fully di¤erentiable and converges to max fr; 0g for n �! 1. However, the perturbation approximation in (14)
only uses a fourth-order Taylor-series expansion of f (r). Although this particular fourth order polynomial may display
high accuracy close to the deterministic steady state, its accuracy may easily deteriorate far from this point when n is
large. It is for this reason that we prefer to specify a fourth-order polynomial and calibrate its parameters such that the
approximated max-function displays satisfying behaviour in a relevant interval for the policy rate.
14A bias correction is sometimes also referred to as a control variate technique and widely used in �nance to improve

the accuracy of numerical approximations (see for instance Hull (2012)).
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for k = 1; 2; :::;K with xt+i determined from (19). Hence, the bias induced by the approximated

max-function under perfect foresight is given by

ebk (xt) = eyk (xt)� eyappk (xt) (21)

for k = 1; 2; :::;K. For the perturbation solution in (14), we assume the bias bk (xt) due to the

approximated max-function is a¢ ne in the bias under perfect foresight, i.e. bk (xt) = 
0;k+
1;kebk (xt)
where 
0;k and 
1;k are free parameters. The intercept 
0;k is included to correct potential biases in

pk�� and p
k
����, whereas 
1;kebk (xt) captures biases depending on the level of the pricing factors xt.

Hence, the considered bias-adjusted perturbation approximation to bond yields is

yBiasAdjk (xt) = yappk (xt) + bk (xt) (22)

= 
0;k + y
app
k (xt) + 
1;k

ebk (xt) ;
where yappt;k is given by (15). To calibrate 
0;k and 
1;k we rely on the Monte Carlo method to obtain the

exact solution for bond yields yk (xt). The pricing errors zt;k implied by the bias-adjusted perturbation

approximation are then given by

yk (xt) = 
0;k + y
app
k (xt) + 
1;k

ebk (xt) + zt;k (23)

for k = 1; 2; :::;K and t = 1; 2; :::; T , or

yk � yappk = 1
0;k +
ebk
1;k + zk, (24)

where yk, y
app
k , 1, ebk, and zk have dimension T � 1 for k = 1; 2; :::;K. We then suggest calibrating


0;k and 
1;k by minimizing the squared pricing errors, which is equivalent to regressing yk � y
app
k on

Xk �
�
1 ebk �, i.e. 264 
�0;k


�1;k

375 = �X0kXk��1X0k �yk � yappk �
(25)

for k = 1; 2; :::;K. This calibration of the bias correction is clearly model-dependent because the
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considered shadow rate model and its parameters a¤ect yappt;k and ebt;k. To account for this dependence
we therefore suggest the following joint estimation and calibration procedure, where steps 2 to 5 may

be iterated if desired:

Step 1: Let 
0;k = 0 and 
1;k = 1 for k = 1; 2; :::;K and estimate the model.

Step 2: Simulate fxsgTs=1 from the estimated model.

Step 3: For fxsgTs=1, compute yk, y
app
k and ebk for k = 1; 2; :::;K.

Step 4: Use (25) to compute
n

�0;k; 


�
1;k

oK
k=1
.

Step 5: Re-estimate the model given
n

�0;k; 


�
1;k

oK
k=1

from step 4.

3.4 Expected future short rates and term premia

We de�ne term premia as the di¤erence between bond yields and average expected future short rates,

i.e.

TPk (xt) = yk (xt)�
1

k

Pk�1
i=0 E

P
t [y1 (xt+i)] (26)

for k = 1; 2; :::;K as in Dai & Singleton (2002). Bond yields yk (xt) are approximated by (15) and we

therefore only need to compute EPt [y1 (xt+i)]. These conditional expectations are also straightforward

to approximate by the perturbation method as shown in Appendix B. The formulas in Appendix B

may be used to obtain conditional expectations of bond yields for any maturity, implying that our

results are also useful when including survey data on future bond yields in DTSMs as suggested by

Kim & Orphanides (2012). It is �nally worth noticing that we do not need to bias correct bond yields

or expected future short rates when computing term premia in shadow rate models, because these bias

corrections are identical and therefore cancel out in (26).

4 The estimation procedure

All considered DTSMs are estimated using the sequential regression (SR) approach by Andreasen

& Christensen (2013). Several reasons motivate our choice. First, QTSMs and shadow rate models

introduce a non-linear �ltering problem which is easily addressed by the SR approach as latent pricing

14



factors are estimated by a sequence of non-linear cross-section regressions. Second, the SR approach

gives consistent and asymptotically normal estimates under weaker restrictions than typically con-

sidered for likelihood-based inference. The robust nature of the estimation approach is particularly

attractive in our context because all the considered DTSMs di¤er only in their Q dynamics which may

be estimated independently of the P dynamics in the SR approach. Hence, the models�abilities to

match in-sample bond yields in the SR approach apply for any functional form of the market price of

risk f (xt). Finally, the computational e¢ ciency of the SR approach is very appealing, as it allows us

to estimate three- and four-factor models without any di¢ culty.

We next present the SR approach and describe how the latent factors and model parameters are

estimated in the models considered.

4.1 The SR approach

The SR approach may be applied to DTSMs where bond yields are potentially non-linear functions of

latent pricing factors and measured with errors vt;k, i.e.

yt;k = gk (xt;�1) + vt;k: (27)

The functional relationship between the pricing factors and bond yields is parameterized by �1, which

corresponds to the risk-neutral parameters in no-arbitrage DTSMs. For the benchmark ATSM, the

g-function is linear in the pricing factors, i.e. gATSMk

�
xt;�

ATSM
1

�
� � 1

k (Ak +B
0
kxt) and �

ATSM
1 ��

� vec (diag(�))0 vech (�)0
�0
. The QTSM induces a slightly more complicated expression for

bond yields because gQTSMk

�
xt;�

QTSM
1

�
� � 1

k

�
~Ak + ~B

0
kxt + x

0
t
~Ckxt

�
and �QTSM1 �

� �
�ATSM1

�0
�0 vec (	)0

�0
.

In the shadow rate model, gSHk
�
xt;�

SH
1

�
� 
0;k+eyappk (xt)+
1;k

ebk (xt) and therefore also non-linear in
the pricing factors with �SH1 = �ATSM1 . It is important to stress that the SR approach does not impose

any distributional assumptions on the measurement errors vt;k, which may display heteroskedasticity

and correlation in both the cross-section and the time series dimension.

The SR approach allows the pricing factors under the P measure to evolve according to a general

Markov process of the form

xt+1 = h
�
xt; �

P
t+1;�1;�2

�
: (28)
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The h-function may depend on �1 containing the risk-neutral parameters and �2, which in our case are

f0 and f1 specifying the market price of risk. All the DTSMs considered have a linear and unrestricted

transition function which we represent by

xt+1 = h0 + hxxt + "
P
t+1; (29)

with h0 � ��+ f0, hx � I��+ f1, and "Pt+1 � NID (0;��0). Adopting this parametrization of

the h-function, we have �2 �
�
h00 vec (hx)

0 vech (�)0
�0
.

The subsequent sections describe how the latent pricing factors fxtgTt=1 and the model parameters

(�1;�2) are estimated in the SR approach using a three-step procedure.

4.1.1 The SR approach: Step 1

The latent pricing factors are estimated by running the cross-section regressions

x̂t (�1) = arg min
xt2Xt

Qt =
1

2ny;t

ny;tX
k=1

(yt;k � gk (xt;�1))2 (30)

for t = 1; 2; :::; T , where ny;t refers to the number of bond yields in time period t. The estimated

factors are denoted fx̂2;t (�1)gTt=1 because they are computed for a given �1. These regressions have a

closed-form solution for the benchmark ATSM as gATSMk is linear in the pricing factors. For the QTSM

and the shadow rate model, the regressions in (30) are non-linear and solved using the Levenberg-

Marquardt method with the pricing factors from the period time period x̂2;t�1 (�1) serving as ideal

starting values for t = 2; 3; :::; T .

The model parameters �1 are obtained by pooling all squared residuals from (30) and minimizing

their sum with respect to �1, i.e.

�̂
step1
1 = arg min

�12�1
Qstep11:T =

1

2N

TX
t=1

ny;tX
k=1

(yt;k � gk (x̂t (�1) ;�1))2 ; (31)

where N �
PT
t=1 ny;t. Given standard regularity conditions, Andreasen & Christensen (2013) show
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consistency and asymptotic normality of �̂
step1
1 , i.e.

p
N
�
�̂
step1
1 � �o1

�
d�! N

�
0;
�
A�1o

��1
B�1o

�
A�1o

��1�
; (32)

where the superscript "o" denotes the true value. These asymptotic properties are derived by letting

the number of bond yields in each time period ny tend to in�nity, implying N ! 1. The expected

value of the average Hessian matrix A�1o may be estimated consistently by

Â�1 =
1

N

TP
t=1

ny;tP
k=1

�
	̂�1
t;k

��
	̂�1
t;k

�0
; (33)

where

	�1
t;k (�1) �

@x̂02;t (�1)

@�1

@gk (x̂2;t (�1) ;�1)

@x2;t (�1)
+
@gk (x̂2;t (�1) ;�1)

@�1
(34)

and 	̂�1
t;k � 	�1

t;k

�
�̂
step1
1

�
. The average of the score function B�1o is estimated using an extension of

the Newey-West estimator that is robust to heteroskedasticity, cross-section correlation, and autocor-

relation in vt;k. The most general speci�cation considered in Andreasen & Christensen (2013) is given

by

B̂�1 =
1

N

TP
t=1

ny;tP
k=1

wTP
kT=�wT

wDP
kD=�wD

�
1� jkT j

1 + wT

��
1� jkDj

1 + wD

�
(35)

�
�
	̂�1
t;k

��
	̂�1
t+kT ;j+kD

�0 b~vt;kb~vt+kT ;k+kD
where wD is the bandwidth for bond yields in the cross-section dimension when ordered by duration

(i.e. maturity) and wT is the corresponding bandwidth for the time series dimension.

4.1.2 The SR approach: Step 2

The parameters �2 in (29) are estimated using fx̂tgTt=1 and moment conditions accounting for the

uncertainty futgTt=1 in the estimated pricing factors, i.e. x̂t = xot +ut where xot denotes the true factor

value. We follow Andreasen & Christensen (2013) and consider the moments

qT (�2) �
1

T

TP
t=1
qt (�2) = 0; (36)
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where

qt (�2) �

266666664

"̂Pt+1

vec
�
"̂Pt+1x̂

0
t � Cov (ut+1;ut) + hxV ar (ut)

�
vech

0B@ "̂Pt+1
�
"̂Pt+1

�0 � V ar �"̂Pt+1�� V ar (ut)� hxV ar (ut)h0x
+Cov (ut+1;ut)h

0
x + hxCov (ut;ut+1)

1CA

377777775
(37)

and "̂Pt+1 � x̂t+1 � h0 � hxx̂t. Consistent estimators of V ar (ut), Cov (ut+1;ut), and Cov (ut;ut+1)

are provided in Andreasen & Christensen (2013) using output from the �rst estimation step, and �2

can therefore be estimated consistently by generalized methods of moments when the number of time

periods T tends to in�nity. All considered models in the present paper have unrestricted P dynamics,

and the moment conditions in (36) may then be solved in closed form. This solution is obtained by

correcting all second moments for estimation uncertainty in fx̂tgTt=1 and running the regression

�
ĥstep2x ĥstep20

�
=

�
T�1P
t=1

�
x̂t+1x̂

0
t � dCov (ut+1;ut) x̂t+1

��
(38)

�

0B@T�1P
t=1

264 x̂tx̂0t � dV ar (ut) x̂t

x̂0t 1

375
1CA
�1

dV ar �"Pt+1�step2 =
1

T � 1
T�1P
t=1
(b̂�t+1b̂�0t+1 � dV ar (ut)� ĥxdV ar (ut) ĥ0x (39)

+ dCov (ut+1;ut) ĥ0x + ĥxdCov (ut;ut+1));
with �̂step2 obtained from a Cholesky decomposition of dV ar �"Pt+1�step2. When T tends to in�nity,

Andreasen & Christensen (2013) show that the asymptotic distribution of �2 is

p
T
�
�step22 � �o2

�
d�! N

�
0;
�
RS�1R0

��1�
; (40)

where R �@qT (�
o
2)
0

@�2
and S �

1P
�=�1

E
�
qt (�2)qt�� (�2)

0�. We estimate R using numerical di¤erentiation

and S by the Newey-West estimator.
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4.1.3 The SR approach: Step 3

The elements in � appear in �1 and �2 and are therefore estimated in both the �rst and second

estimation step. These estimates may be combined in an optimal way to reduce any potential e¢ ciency

loss from the use of sequential identi�cation as shown by Andreasen & Christensen (2013). We

generally �nd that �̂step1 is estimated very inaccurately compared to �̂step2, meaning that the time

series estimate �̂step2 cannot be improved by adding cross-section information from �̂step1.15 Hence,

the adopted estimate of � after the �rst two steps is given by �̂step2.

Based on the more accurate estimate of � from the second step, it is natural to re-estimate the

remaining elements in �1 when conditioned on �̂step2. That is

�̂
step3
11 = arg min

�112�11
Qstep31:T =

1

2N

TX
t=1

ny;tX
k=1

�
yt;k � gk

�
x̂t

�
�11; �̂

step2
�
;�11; �̂

step2
��2

; (41)

where �11 refers to all elements in �1 except �. Andreasen & Christensen (2013) show consistency

and asymptotic normality of �̂
step3
11 with

dV ar ��̂step311

�
=
V̂step3
�11

�
�̂step2

�
N

+ K̂dV ar ��̂step2� K̂0: (42)

The �rst term V̂step3
�11

�
�̂step2

�
=N is given by (32) when used on the subset of �1 corresponding to �11.

The second term in (42) corrects for estimation uncertainty in �̂step2 withK �@�̂step311 (�) =@vech (�)0.

We estimate K as suggested in Andreasen & Christensen (2013) and refer to their paper for further

details.

Given the estimated pricing factors
n
x̂t

�
�step311 ; �̂step2

�oT
t=1

from (41), we �nally update our esti-

mates of �2 using (38) and (39). These estimates are denoted ĥ
step3
0 , ĥstep3x , and �̂step3 and we refer

to them as �step32 .

15Adopting the notation in Andreasen & Christensen (2013), we generally �nd � t 0. The only exceptions are the
two-factor QTSM and the four-factor ATSM where � 6= 0. However, imposing � = 0 gives nearly identical estimates to
those obtained when � is determined optimally in both cases. To ensure similarity across all of the models considered,
we therefore also let � = 0 for the two-factor QTSM and the four-factor ATSM.
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5 Empirical results: In-sample performance

This section estimates the benchmark ATSM, the QTSM, and the shadow rate model on post-war

US data. For comparability with much of the existing literature on the ZLB, we �rst study models

with two pricing factors before exploring the performance of three-factor models. We �nd several

short-comings of these two- and three-factor models and we therefore also estimate models with four

pricing factors. Our analysis is structured as follows. Section 5.1 presents the data, and our model

estimates are discussed in Section 5.2. We examine the accuracy of the bias-adjusted perturbation

approximation for the shadow rate model in Section 5.3. The two subsequent sections explore how

well the models match various aspects of bond yields.

5.1 Data

We use start-of-month nominal bond yields in the US from July 1961 to May 2013 as provided by

Gürkaynak, Sack & Wright (2007). The SR approach is constructed for a setting where many observ-

ables are available each time period, and we therefore include more bond yields for the estimation than

typically used in the literature. Simulation results by Andreasen & Christensen (2013) suggest that

about 15 bond yields are su¢ cient and that any e¢ ciency loss of the SR approach compared to Max-

imum Likelihood may be small with 25 bond yields. Given our interest in the 10-year term structure,

we include all bond yields in the 0.25-10 year maturity range when sampled at a quarterly frequency.

That is, whenever possible, we include 40 bond yields having the maturities f0:25; 0:50; :::; 9:75; 10g.16

Due to a lack of long-term Treasury notes before September 1971, bonds yields in the 7-10 year ma-

turity range are not available before this date. We address this problem by explicitly accounting for

missing values in the SR approach.

5.2 Model estimates

The estimation results for the two-factor models are reported in Table 1. The benchmark ATSM

displays the usual properties with stationary and highly persistent factors under both the Q and P

measure as diag(�) > 0 and hx has eigenvalues 0:9913 and 0:9646. The same properties hold for the

16These bond yields are computed using the estimated parametric form for the yield curve in Gürkaynak et al. (2007).
Ongoing work explores the robustness of our results when using non-parametric estimation methods to extract the yield
curves from coupon bonds.

20



pricing factors in the QTSM, where 	 enforces the ZLB by having strictly positive eigenvalues (0:0359

and 1:9641). We also �nd that the two pricing factors in the QTSM are positively correlated (0.44)

whereas they display negative correlation in the ATSM (-0.65). The estimates for the shadow rate with

two pricing factors are generally very similar to those for the two-factor benchmark ATSM, but we also

�nd some di¤erences. For instance, the pricing factors in the shadow rate model are weakly positively

correlated (0.15) and the conditional volatility of the second pricing factor is �22 = 6:45 � 10�4 and

hence larger than the corresponding estimate in the ATSM of �22 = 3:97� 10�4.17

< Table 1 about here >

Turning to three- and four-factor models in Tables 2 and 3, respectively, all models imply stationary

and highly persistent pricing factors under both the Q and P measure. Our estimates imply that the

ZLB in the three-factor QTSM is enforced by letting 	 be positive de�nite, whereas 	 is found to

be positive semi-de�nite in the four-factor QTSM as 	 has one eigenvalue equal to zero.18 We also

note that several estimates for the three- and four-factor benchmark ATSM di¤er substantially from

the corresponding estimates in the shadow rate models. This �nding indicates that one should be

cautious of directly using parameters from the benchmark ATSM in the shadow rate model to explore

the implications of the ZLB.

< Table 2 and 3 about here >

5.3 Calibration and accuracy of the perturbation approximation

For each of the considered shadow rate models, we calibrate the scaling of the bias correction from

simulated time series of 2; 000 observations using preliminary estimates with 
0;k = 0 and 
1;k = 1

for k = 1; 2; :::;K. The �true�solution to bond yields is here obtained by the Monte Carlo integration

with 10; 000 draws. The calibrated values of
n

�0;k; 


�
1;k

oK
k=1

for the shadow rate model with two,

three, and four pricing factors are displayed in the left column of Figure 2. We generally �nd that

the 
�1;k parameters start at one and then decrease with maturity. Most calibrated intercepts 

�
0;k are

17For the robust standard errors in Table 1 we use a bandwidth of 5 in the Newey-West estimate of S in (40) and
wD = wT = 10 in (35). These standard errors are broadly similar when using slightly smaller or larger bandwidths.
18This implies that the estimates are on the boundary of the domain for the parameters and that the standard errors in

Table 3 only serve as an approximation. Ongoing work aims to compute more accurate standard errors using a bootstrap
procedure.
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very close to zero, except for bond yields with long maturities in the four-factor model. Given these

calibrated values of
n

�0;k; 


�
1;k

oK
k=1
, the three shadow rate models are then re-estimated to obtain the

results reported in Tables 1-3.

We next explore the accuracy of the fourth-order perturbation approximation when using the

estimated pricing factors and model parameters. The charts in the right column of Figure 2 show

the root mean squared pricing errors (RMSEs) for bond yields by maturity, where the �true�solution

to bond yields is computed using Monte Carlo integration with 10; 000 draws. The RMSEs without

the bias correction are marked with black lines and found to be between 15 and 30 annualized basis

points for all the shadow rate models considered. Adding the unscaled bias correction (
0;k = 0 and


1;k = 1) to the fourth-order perturbation approximation substantially reduces the RMSEs as they

fall to between 5 and 15 annualized basis points. Using the optimal scaling of the bias correctionn

�0;k; 


�
1;k

oK
k=1

further reduces the RMSEs to about 5 annualized basis points, except for bond yields

with short maturities in the two-factor models where the RMSEs are around 10 annualized basis

points.

< Figure 2 about here >

Further evidence on the satisfying performance of the bias-adjusted fourth-order perturbation

approximation using
n

�0;k; 


�
1;k

oK
k=1

is provided in Figure 3, showing bond yields and pricing errors

for a selected number of maturities in the estimated three-factor model.19 This �gure shows that the

RMSEs are low when interest rates are far from zero but also when they approach the ZLB during

2002-2004 and after 2008. As a result, the maximal pricing errors rarely exceed �10 annualized basis

points and this shows that our approximation achieves high accuracy for bond yields throughout the

sample.

< Figure 3 about here >

Another notable advantage of the suggested perturbation approximation is its computational speed.

It only takes 0.6 seconds to obtain all bond yields in the two-factor model. The computational

requirement only increase gradually with the number of pricing factors, as we are able to solve the

three- and four-factor shadow rate models in just 1.7 and 3.7 seconds, respectively.20

19Similar plots for the two- and four-factor shadow rate models are available on request.
20The computations are done in MATLAB 2012a using an Intel(R) Core(TM) i5-320M CPU 2 2.50Ghz.
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These �ndings lead us to the conclusion that the bias-adjusted perturbation approximation is

highly accurate when applied to bond yields in shadow rate models. We also �nd that this method is

computationally very appealling because its execution time remains highly tractable even in models

with four pricing factors.

5.4 Goodness of �t for bond yields

We next study the in-sample �t by looking at the objective functions for the models considered. The

�rst part of Table 4 reports ~Qstep11:T � 100
q
Qstep11:T =2 which measures the standard deviation of all

residuals in annualized basis points for the �rst step in the SR approach. With two pricing factors,

the QTSM clearly provides the best �t with ~Qstep11:T = 10:15, whereas the shadow rate model and the

benchmark ATSM have ~Qstep11:T = 11:37 and ~Qstep11:T = 11:50, respectively. The QTSM also delivers the

best �t with three pricing factors where ~Qstep11:T = 4:81, whereas the worst �t is seen in the shadow

rate model
�
~Qstep11:T = 5:34

�
. Turning to four-factor models, we �nd that the QTSM and the shadow

rate model obtain the same �t of bond yields with ~Qstep11:T = 2:03, whereas the benchmark ATSM has

~Qstep11:T = 2:40. It is important to note that these results are obtained without using the law of motion

for the pricing factors under P, and our results therefore hold for any functional form of the market

price of risk f (xt).

The second part of Table 4 shows the scaled objective functions from the third step in the SR

approach, i.e. ~Qstep31:T � 100
q
Qstep31:T =2, where � is estimated from the time-series dimension instead

of the cross-section dimension as in the �rst step. Here, ~Qstep31:T is only marginally larger than ~Qstep11:T

for all models, meaning that the in-sample �t of bond yields is almost una¤ected by the alternative

estimate of �. It is therefore reasonable to believe that the dependence on the P dynamics through

� is minimal in our case and that results in the third step of the SR approach largely remain robust

to the chosen functional form of f (xt).

< Table 4 about here >

A more careful examination of the in-sample �t is provided in Figure 4, where charts in the

�rst column show recursively computed objective functions using the estimates in Tables 1 to 3, i.e.n
~Qstep31:t

oT
t=1
. These charts suggest that the in-sample �t generally deteriorates during the 1970�s and

improve afterwards, and that the relative performance of the three models is fairly stable throughout

23



the sample. The same type of plots are provided in the second column in Figure 4 but only when the

objective functions are computed from January 1998 to May 2013 to explore the �t when bond yields

are close to the ZLB. We emphasize that these plots are computed using the estimates from the full

sample, i.e. those in Tables 1 to 3. In this time period, the QTSM clearly delivers the best in-sample

�t regardless of the number of pricing factors, whereas the shadow rate model only outperforms the

benchmark ATSM with four pricing factors.

Another way to explore the in-sample �t of bond yields is provided in the �nal column in Figure

4, showing the standard deviation of the residuals by maturity, i.e. �k = 100
q

1
T

PT
t=1 v

2
t;k for k =

1; 2; :::;K with expressed �k in annualized basis points. All two-factor models clearly struggle to match

bond yields at the short and long end of the term structure as �0:25y = 40 and �10y = 15. Including a

third pricing factor substantially reduces the residuals at the long end of the term structure (�10y = 6),

but the residuals remain high at the short end with �0:25y > 15 in all models. One way to address

this shortcoming of three-factor models is to include a fourth pricing factor as the standard deviation

of the residuals at the short end then fall below 7 annualized basis points. In other words, a fourth

pricing factors is required to properly match short-term bond yields.

< Figure 4 about here >

Based on these �ndings we conclude that a quadratic policy rate is the best way to enforce the

ZLB in two- and three-factor models when measured by the in-sample �t. In four-factor models, a

quadratic policy rate and a shadow rate speci�cation deliver broadly the same �t of bond yields, and

we are therefore unable to rank the two mechanisms for enforcing the ZLB in this case.

5.5 Matching key moments for bond yields

The QTSM with nx pricing factors has nx (nx + 1) =2� 1 additional parameters compared to the two

other models, and the quadratic model is therefore likely to do well when measured by the in-sample

�t. Issues related to over�tting may be partially addressed by also evaluating the considered models

by their ability to match moments not directly included in the estimation. The �rst set of moments

we explore are the unconditional �rst and second moments of bond yields in Figure 5. All models

match the upward sloping unconditional yield curve fairly well, except for the three-factor QTSM. We

also note that most models provide relatively low estimates of the unconditional mean in bond yields.
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The decreasing pattern in the unconditional volatility of bond yields is broadly matched by nearly all

models, except for the three-factor QTSM.

< Figure 5 about here >

Another set of moments typically considered to assess the performance of DTSMs are derived in

Dai & Singleton (2002). They start by considering the regressions for excess returns

yt+1;k�1 � yt;k = �k + �k
yt;k � rt
k � 1 + ut;k (43)

where ut;k denotes the residual. The expectation hypothesis implies �k = 0 and �k = 1 for k =

1; 2; :::;K, but this prediction is clearly rejected for US data, as �k is negative and decreases with

maturity. The ability of DTSMs to reproduce the observed pattern in f�kgKk=1 is referred to as LPY(i)

by Dai & Singleton (2002) and tests whether the models are able to capture the P dynamics of bond

yields. The charts in the �rst column of Figure 6 examine the performance of the considered DTSMs

along this dimension, where the corresponding model-moments of �k are computed from simulated

time series of 500,000 observations. We �rst note that the benchmark ATSM does extremely well

along this dimension, even with just two pricing factors. The QTSMs and the shadow rate models

struggle to match the downward sloping pattern in �k with two and three pricing factors. Much better

performance is obtained in the four-factor models, as they match the negative and decreasing pattern

in �k.

The second set of moment conditions studied in Dai & Singleton (2002) are derived by modifying

the regressions in (43) as follows

yt+1;k�1 � yt;k �
et;k
k � 1 = �

Q
k + �

Q
k

yt;k � rt
k � 1 + uQt;k (44)

where et;k � EPt [log (Pt+1;k�1) = log (Pt;k)� rt] denotes the excess holding period return and u
Q
t;k is the

residual. If the risk premia adjustment in et;k is correctly speci�ed, then we recover the expectation

hypothesis with �Qk = 1 for all k as shown by Dai & Singleton (2002). The ability of DTSMs to

generate this implication is referred to as LPY(ii) by Dai & Singleton (2002) and tests if the models

are correctly speci�ed under the Q measure. Given that all of the models considered in the present

paper only di¤er in their Q distribution, we view LPY(ii) as a very informative test to discriminate
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between the models. Charts in the second column of Figure 6 study the ability of the models to

reproduce �Qk = 1 for all k. We interestingly �nd that both the benchmark ATSM and the QTSM

struggle with two and three pricing factors as the regression loadings di¤er substantially from one.

Slightly better performance is observed for these models with four pricing factors, but substantial

deviations remain. In sharp contrast to the performance of these models, all the shadow rate models

do extremely well along this dimension as they nearly reproduce a regression coe¢ cient of one. This

suggests that the shadow rate model is much better at matching the Q dynamics than the benchmark

ATSM and the QTSM.21

< Figure 6 about here >

We �nally plot the 10-year term premium in Figure 7 for all estimated models. For the two-factor

models, we observe some di¤erences in reported term premia which is expected given the relative

large residuals in these models. For three- and four-factor models, we observe that the benchmark

ATSM and the shadow rate model provide broadly similar estimates of term premia, except after 2008

where bond yields approach the ZLB. We also note that the estimated term premia in the three- and

four-factor QTSMs are somewhat higher than those obtained from the three- and four-factor shadow

rate models.

< Figure 7 about here >

These �ndings lead us to the following conclusions. In the QTSM, four pricing factors are needed

to match the unconditional �rst and second moments whereas only three factors are required in the

shadow rate model. We also �nd that both models rely on four pricing factors to match the dynamics

of bond yields under the P measure and hence pass the LPY(i) test. Importantly, only shadow rate

models pass the LPY(ii) test, suggesting that the Q dynamics are best captured by a shadow rate

speci�cation.

21Ongoing work explores if the inability of the benchmark ATSM and the QTSM to pass the LPY(ii) test is caused by
the low interest rates after 2000.
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6 Empirical results: performance out-of-sample

Another commonly used method to correct for potential over�tting is to conduct a forecasting exercise

out-of-sample. This is the topic of the current section where we evaluate the forecasting performance of

the benchmark ATSM, the QTSM, and the shadow rate model with three pricing factors from January

2009 to May 2013.22 We focus on this period because the Federal Open Market Committee has set a

target range of 0-0.25% for the e¤ective Federal Funds Rate, meaning that policy rate has been at its

e¤ective ZLB. The forecasting study is carried out by estimating all three-factor models recursively

every month to forecasts bond yields up to 12 months ahead. Given that the last 12 months of data is

reserved for evaluating the �nal forecasts, each model is estimated a total of 41 times which is easily

done due to the computational e¢ ciency of the SR approach relative to commonly used estimation

alternatives.

Figure 8 shows root mean squared prediction error (RMSPE) statistics from the three models at

forecast horizons of 1, 3, 6, and 12 months, alongside RMSPE statistics under the assumption that

bond yields of all maturities follow random walks. Three main results emerge. First, the one-month

ahead forecasting performance of all models is similar, with none of the models outperforming a random

walk for any maturity. Second, the forecasting performance of the benchmark ATSM for short-term

bond yields becomes substantially worse at the 12-month horizon, which is qualitatively in line with

the �ndings by Pooter, Ravazzolo & van Dijk (2010). In contrast, the forecasting performance of the

QTSM and, in particular, the shadow rate model does not deteriorate with the forecast horizon for

short-term bond yields. At a 12-month horizon the shadow rate model even performs signi�cantly

better than a random walk at forecasting bond yields with 3-month and 1-year maturities.23 The

reason why the QTSM and shadow rate model perform better in this respect is likely to be because

they can generate a lower degree of mean reversion in bond yields than the benchmark ATSM when

yields are close to the ZLB. For example, in May 2012 the 12-month ahead forecasts of the 3-month

rate are 0.60% in the ATSM, 0.10% in the QTSM, and 0.16% in the shadow rate model.

Third, the relative performance of the QTSM is worse for long-term bond yields, particularly at

longer forecasting horizons. It seems plausible that for bond yields not currently close to the lower

22Ongoing work explores the forecasting performance of the considered two- and four-factor models and on longer time
periods.
23Outperformance at the 5% signi�cance level is based on the Harvey, Leybourne & Newbold (1997) small sample

modi�cation of the Diebold & Mariano (1995) test.
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bound, the need to estimate more parameters in the QTSM outweighs any bene�ts from including

quadratic terms in the policy rate. Even the shadow rate model does not come close to beating a

random walk for long-term bond yields, which seems broadly consistent with the �ndings in Pooter

et al. (2010).

< Figure 8 about here >

In conclusion, the shadow rate model appears to o¤er the best forecasting performance in terms

of RMSPE, where it out-performs the benchmark ATSM at short maturity and the QTSM at longer

maturities.

7 Conclusion

This paper studies whether DTSMs for US nominal bond yields should enforce the ZLB through a

quadratic policy rate or a shadow rate. The question is addressed by estimating QTSMs and shadow

rate models with two, three, and four latent pricing factors using the SR approach. Bond yields

in the shadow rate models are e¢ ciently computed by a fourth-order perturbation approximation,

extended with a novel bias correction for interest rates under perfect foresight. When measured in

terms of in-sample �t, we generally �nd that QTSMs outperform shadow rate models, except with

four pricing factors where both models deliver the same �t of bond yields. However, some of the

good performance for the QTSMs are likely related to some degree of over�tting, as these models

perform worse than shadow rate models on moments not directly incorporated in the estimation. This

includes the ability of the models to match unconditional �rst and second moments for bond yields,

and importantly pass the LPY(i) and LPY(ii) tests of Dai & Singleton (2002). Furthermore, the

shadow rate models also seem to outperform QTSMs in a proper out-of-sample forecasting exercise.

Our work therefore suggests that DTSMs for US bond yields should enforce the ZLB by adopting a

shadow rate speci�cation instead of a quadratic policy rate, possibly using four pricing factors.
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A Computing bond prices by the perturbation method

A.1 Notation

We let the indices � and 
 relate to elements of xt, while � corresponds to elements of �t. Subscripts
on these indices capture the sequence in which derivatives are taken. For example, �1 corresponds
to the �rst time a function is di¤erentiated with respect to xt, while �2 is used when di¤erentiating
with respect to xt the second time, and so on. As typically done in the literature, we adopt the tensor
notation. Hence, [pkx]
1 denotes the 
1-th element of the 1�nx vector of derivatives of pk with respect
to x. Similarly, the derivative of h with respect to x is an nx�nx matrix and [hx]
1�1 is the element of
this matrix located at the intersection of the 
1-th row and the �1-th column. This notation facilitates
writing summation as h

pk�1x

i

1
[hx]


1
�1
=
Pnx

1=1

@ pk�1

@ x
1

@ h
1

@x�1
;

and h
pk�1xx

i

1
2

[hx]

2
�2
[hx]


1
�1
=
Pnx

1=1

Pnx

2=1

@2 pk�1

@ x
1@ x
2

@ h
2

@x�2

@ h
1

@x�1
;

where, for instance, h
1 denotes the 
1-th function of mapping h and x�1 is the �1-th element of
vector x. Here, and throughout, we omit the function arguments as all functions are evaluated at the
deterministic steady state.

The recursions for bond price derivatives that di¤er from zero are stated below. Here, we rely
on derivatives of the h-function and the M-function. We adopt the notation that hxn refers to
derivatives of the h-function with respect to xt taken n times. Similarly,Mzjyn refers to the derivative
of M with respect to z taken j times and with respect to y taken n times, for z;y 2fxt;xt+1g.
All these derivatives are evaluated at the deterministic steady state. Given that the h-function and
the M-function are known, all required derivatives with respect to these functions follow by simple
di¤erentiation. In evaluating the expressions below, it is useful to recall the limits for the adopted
indices

�1; �2; �3; �4 = 1; 2; :::nx


1; 
2; 
3; 
4 = 1; 2; :::nx

�1; �2; �3; �4 = 1; 2; :::; n�

where nx denotes the number of pricing factors in xt and n� refers to the number of innovations.
Finally, the validity of the stated bond price derivatives have been veri�ed in relation to Dynare++
on a number of test examples.

A.2 Bond price derivatives: �rst-order termsh
pkx

i
�1
=
�
p1x
�
�1
+
h
pk�1x

i

1
[hx]


1
�1

A.3 Bond price derivatives: second-order termsh
pkxx
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�1�2

=
�
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�1�2
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Finally, let m4 (�t+1) denotes the fourth moment of �t+1 (�1; 1) for �1 = 1; 2; :::; ne. Hence,
m4 (�t+1) is an ne � ne � ne � ne matrix.
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B Computing conditional expectations by the perturbation method

Suppose we have a perturbation approximation to the variable rt and want to compute its conditional
expectations, i.e. r1;t � Et [rt+1], r2;t � Et [rt+2], r3;t � Et [rt+3], etc. The law of iterated expectations
implies r2;t � Et [rt+2] = Et [Et+1 [rt+2]] = Et [r1;t+1] and so on. We therefore only need a formula to
compute r1;t � Et [rt+1] as all remaining expectations follow by iterating this formula. Hence, consider
the problem

b (xt; �) = Et [r (xt+1; �)] ; (45)

and observe that
F (xt; �) � Et

�
�b (xt; �) + r

�
h (xt) + ���t+1; �

��
= 0; (46)

32



given (10). The conditional expectation Et is evaluated under the same measure as the innovations
�t+1. The expression in (46) must hold for all values of (xt; �) and for all possible derivatives of
F (xt; �). Using these conditions, it is possible to compute all derivatives of b with respect to (xt; �)
around the deterministic steady state, given derivatives of h (xt) and r (xt+1; �) around the same
point. In presenting the formulas below, we adopt the same notation as in Appendix A.

B.1 Conditional expectations: �rst-order terms
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B.4 Conditional expectations: fourth-order terms
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Table 1: Estimation results: Two-factor models
Robust standard errors for elements in �̂

step3

11 are computed using (42) and (35) with wD = 10 and wT = 10.

For elements in �̂
step3

2 , robust standard errors are computed using (40) with S obtained by the Newey-West
estimator with a bandwidth of 5. The estimates for the shadow rate model are obtained using a fourth-order
perturbation approximation where the scaling of the bias correction is calibrated as described in Section 3.3
using a simulated time series of 2,000 observations. Estimates with one or two stars denote signi�cance at the
5 percent and 1 percent level, respectively.

ATSM QTSM Shadow rate
Estimate SE Estimate SE Estimate SE

� 0:0082�� 0:0012 - - 0:0093 0:0202
	21 - - 0:9641�� 0:1775 - -
�11 0:0064�� 0:0011 0:0037 0:0056 0:0034 0:0163
�22 0:0348�� 0:0010 0:0420� 0:0203 0:0420 0:0626
�1 - - 0:0686 0:0652 - -
�2 - - 0:0227� 0:0112 - -
h0 (1; 1) 2:75� 10�5 3:57� 10�5 4:65� 10�5 3:98� 10�4 �1:24� 10�5 3:42� 10�5
h0 (2; 1) �7:07� 10�5 5:47� 10�5 2:53� 10�5 6:99� 10�4 �3:46� 10�5 5:41� 10�5
hx (1; 1) 1:0056�� 0:0080 0:9866�� 0:0066 0:9918�� 0:0064
hx (1; 2) 0:0370�� 0:0121 0:0330�� 0:0105 0:0226�� 0:0086
hx (2; 1) �0:0159 0:0116 0:0242 0:0141 0:0062 0:0107
hx (2; 2) 0:9503�� 0:0173 0:9241�� 0:0228 0:9544�� 0:0194
�11 4:80�� � 10�4 2:34� 10�5 0:0032�� 2:04� 10�4 4:23�� � 10�4 2:01� 10�5
�21 �3:67�� � 10�4 2:88� 10�5 �0:0045�� 8:77� 10�4 �3:56�� � 10�4 5:11� 10�5
�22 3:97�� � 10�4 5:64� 10�5 0:0058�� 6:70� 10�4 6:45�� � 10�4 8:69� 10�5
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Table 2: Estimation results: Three-factor models
Robust standard errors for elements in �̂

step3

11 are computed using (42) and (35) with wD = 10 and wT = 10.

For elements in �̂
step3

2 , robust standard errors are computed using (40) with S obtained by the Newey-West
estimator with a bandwidth of 5. The estimates for the shadow rate model are obtained using a fourth-order
perturbation approximation where the scaling of the bias correction is calibrated as described in Section 3.3
using a simulated time series of 2,000 observations. Estimates with one or two stars denote signi�cance at the
5 percent and 1 percent level, respectively.

ATSM QTSM Shadow rate
Estimate SE Estimate SE Estimate SE

� 0:0113�� 0:0016 - - 0:0078�� 0:0007
	12 - - 0:8513�� 0:0846 - -
	13 - - 0:8768 0:4848 - -
	23 - - 0:9858�� 0:1486 - -
�11 0:0026 0:0018 0:0010 0:0022 0:0098�� 0:0013
�22 0:0318�� 0:0025 0:0372�� 0:0064 0:1280�� 0:0006
�33 0:0996�� 0:0020 0:1349 0:1173 0:0092�� 0:0006
�1 - - 0:0935 0:1738 - -
�2 - - 0:0422�� 0:0150 - -
�3 - - 0:0012 0:0082 - -
h0 (1; 1) �3:45� 10�5 5:48� 10�5 �1:53� 10�4 3:54� 10�4 �0:0017 0:0010
h0 (2; 1) 1:10� 10�4 1:12� 10�4 �0:0018 0:0011 �2:67� 10�5 5:63� 10�5
h0 (3; 1) �2:54� 10�4 1:33� 10�4 0:0044�� 0:0014 0:0017 0:0010
hx (1; 1) 0:9927�� 0:0075 0:9821�� 0:0081 0:3427 0:2587
hx (1; 2) 0:0313�� 0:0082 0:0184�� 0:0058 0:3914 0:6854
hx (1; 3) 0:0166 0:0148 0:0072 0:0135 �0:6019� 0:2547
hx (2; 1) 0:0189 0:0152 0:0461�� 0:0170 �0:0026 0:0133
hx (2; 2) 0:9520�� 0:0247 1:0053�� 0:0193 0:8745�� 0:0294
hx (2; 3) 0:0535 0:0408 0:0774 0:0403 �0:0039 0:0132
hx (3; 1) �0:0361� 0:0173 �0:0695�� 0:0201 0:6497� 0:2529
hx (3; 2) 0:0016 0:0235 �0:0531�� 0:0259 �0:3483 0:6690
hx (3; 3) 0:8581�� 0:0374 0:8111�� 0:0454 1:5949�� 0:2490
�11 3:72�� � 10�4 2:33� 10�5 0:0025�� 1:77� 10�4 0:0160�� 0:0011
�21 �4:30�� � 10�4 7:09� 10�5 �0:0025�� 6:18� 10�4 �3:19�� � 10�4 4:11� 10�5
�22 7:26�� � 10�4 5:13� 10�5 0:0061�� 5:22� 10�4 5:23�� � 10�4 3:36� 10�5
�31 1:99�� � 10�4 5:91� 10�5 6:36� 10�4 5:40� 10�4 �0:0158�� 0:0011
�32 �6:12�� � 10�4 3:67� 10�5 �0:0061�� 6:47� 10�4 �2:28�� � 10�4 3:37� 10�5
�33 4:38�� � 10�4 4:78� 10�5 0:0036�� 3:15� 10�4 3:90�� � 10�4 3:75� 10�5
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Table 3: Estimation results: Four-factor models
Robust standard errors for elements in �̂

step3

11 are computed using (42) and (35) with wD = 10 and wT = 10.

For elements in �̂
step3

2 , robust standard errors are computed using (40) with S obtained by the Newey-West
estimator with a bandwidth of 5. The estimates for the shadow rate model are obtained using a fourth-order
perturbation approximation where the scaling of the bias correction is calibrated as described in Section 3.3
using a simulated time series of 2,000 observations. Estimates with one or two stars denote signi�cance at the
5 percent and 1 percent level, respectively.

ATSM QTSM Shadow rate
Estimate SE Estimate SE Estimate SE

� 0:0088 0:0105 - - 0:0134 0:0214
	12 - - 0:8744�� 0:0335 - -
	13 - - 0:7860�� 0:0550 - -
	14 - - 0:8890�� 0:0227 - -
	23 - - 0:9800�� 0:0643 - -
	24 - - 0:9993�� 0:0127 - -
	34 - - 0:9735�� 0:0817 - -
�11 0:0087�� 0:0028 0:0007 0:0011 0:0360 0:0529
�22 0:0757�� 0:0030 0:0380�� 0:0040 0:6022 0:9565
�33 0:4415�� 0:0027 0:5665�� 0:0606 0:0619 0:1029
�44 0:0086� 0:0037 0:0644�� 0:0122 0:0015 0:0021
�1 - - 0:1204 0:0897 - -
�2 - - 0:0191 0:0221 - -
�3 - - 0:0218�� 0:0032 - -
�4 - - 0:0063 0:0186 - -
h0 (1; 1) �0:0122 0:0063 �0:0005 0:0006 1:60� 10�4 2:53� 10�4
h0 (2; 1) 5:13� 10�4 7:49� 10�5 0:0027 0:0025 �4:32� 10�4 2:30� 10�4
h0 (3; 1) �1:81� 10�4 9:72� 10�5 0:0101�� 0:0021 �1:88� 10�4 2:76� 10�4
h0 (4; 1) 0:0121 0:0062 �0:0041 0:0026 �3:55� 10�5 6:44� 10�5
hx (1; 1) �5:0208�� 1:3957 0:9844�� 0:0080 0:9942�� 0:0449
hx (1; 2) 1:1644 2:8339 0:0162�� 0:00567 �0:2261�� 0:0667
hx (1; 3) �15:06�� 3:3068 0:0292 0:0154 0:0952 0:0566
hx (1; 4) �5:9616�� 1:3913 0:0085 0:0088 0:0162 0:0291
hx (2; 1) 0:0384�� 0:0149 0:0490 0:0331 �0:0024 0:0257
hx (2; 2) 0:9100�� 0:0327 1:0165�� 0:0363 0:5857�� 0:0565
hx (2; 3) 0:1664�� 0:0431 �0:2174�� 0:0720 0:0111 0:0347
hx (2; 4) 0:0382�� 0:0148 0:0973� 0:0493 �0:0586� 0:0258
hx (3; 1) �0:0494�� 0:0165 �0:0412 0:0226 �0:0442 0:0469
hx (3; 2) �0:0188 0:0348 �0:0174 0:0224 0:2780�� 0:0732
hx (3; 3) 0:6017�� 0:0566 0:61733�� 0:0627 0:8344�� 0:0587
hx (3; 4) �0:0495�� 0:0166 �0:0138 0:0281 �0:0125 0:0314
hx (4; 1) 5:9955�� 1:3876 �0:0438 0:0359 0:0249�� 0:0076
hx (4; 2) �1:1177 2:8174 �0:0405 0:0386 0:0513�� 0:0139
hx (4; 3) 15:02�� 3:2861 0:2902�� 0:0795 0:0160 0:0101
hx (4; 4) 6:9364�� 1:3831 0:8654�� 0:0491 0:9946�� 0:0072
�11 0:0884�� 0:0061 0:0025�� 1:77� 10�4 0:0018�� 1:12� 10�4
�21 �5:97�� � 10�4 6:16� 10�5 �0:0056�� 0:0011 4:33�� � 10�4 1:14� 10�4
�22 6:47�� � 10�4 4:45� 10�5 0:0125�� 7:05� 10�4 9:14�� � 10�4 8:41� 10�5
�31 3:43�� � 10�4 9:63� 10�5 �0:0016�� 5:68� 10�4 �0:0018�� 1:10� 10�4
�32 �5:15�� � 10�4 7:47� 10�5 0:0020�� 7:31� 10�4 �3:12�� � 10�4 3:75� 10�5
�33 6:31�� � 10�4 4:81� 10�5 0:0065�� 7:46� 10�4 4:80�� � 10�4 4:16� 10�5
�41 �0:0880�� 0:0060 0:0045�� 0:0010 �1:89�� � 10�4 2:84� 10�5
�42 �1:89�� � 10�4 3:85� 10�5 �0:0130�� 7:83� 10�4 �2:07� 10�5 1:66� 10�5
�43 �1:14�� � 10�4 2:37� 10�5 �0:0026�� 2:42� 10�4 �1:02�� � 10�4 2:93� 10�5
�44 3:71�� � 10�4 4:64� 10�5 0:0027�� 2:50� 10�4 2:99�� � 10�4 1:73� 10�5

39



Table 4: In-sample �t: The objective functions
This table reports 100

q
Qstep11:T =2 and 100

q
Qstep31:T =2 for the �rst and third step in the SR approach. Figures in

bold highlight the best in-sample �t for a given estimation step.

Step 1 Step 3
ATSM QTSM Shadow rate ATSM QTSM Shadow rate

Two factors 11.50 10.15 11.37 11.59 10.40 11.42
Three factors 5.14 4.81 5.34 5.15 4.83 5.53
Four factors 2.40 2.03 2.03 2.40 2.03 2.04
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Figure 1: The approximated max-function
The approximated max-function is given by dmax fr; 0g = a0 + a1r + a2r2 + a3r3 + a4r4, where a0 = 0:00072 ,
a1 = 0:53, a2 = 65:80, a3 = �2661:14, and a4 = 10000. This speci�cation is obtained by calibrating the
approximated max-function to the true max-function on the displayed interval for annualized interest rates,
i.e. 0.10 corresponds to an annual rate of 10 percent.
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Figure 2: Accuracy of the perturbation approximation
The calibrated values of 
�0 and 


�
1 are computed from simulated time series for the pricing factors of 2,000

observations using preliminary model estimates obtained with 
0 = 0 and 
1 = 1. The RMSEs by maturity
are computed using the estimated pricing factors on US data. In both cases, the true solution for bond yields
are obtained by Monte Carlo integration using 10,000 draws.
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Figure 3: The three-factor shadow rate model: Bond yields and pricing errors
Bond yields and the pricing errors are computed using the pricing factors estimated from US data for the
three-factor shadow rate model. In both cases, the true solution for bond yields are approximated by Monte
Carlo integration using 10,000 draws.
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Figure 4: The in-sample �t
Charts in the �rst column report 100

q
Qstep31:T =2. Charts in the second column report 100

q
Qstep31998:T =2 and the

�nal column reports �k. All charts are computed using the estimates obtained from the full sample.
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Figure 5: Unconditional means and standard deviations
All model-based moments are obtained from simulated time series of 500,000 observations using the estimates
from Tables 1 to 3.
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Figure 6: LPY tests for the P and Q dynamics
Charts in the �rst column show b�k and charts in the second column report b�Qk . All model-based moments are
obtained from simulated time series of 500,000 observations using the estimates from Tables 1 to 3.
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Figure 7: The 10-year term premia and the shadow rate
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Figure 8: Out-of-sample forecasting: Three-factor models
This �gure reports the root mean squared prediction errors (RMSPEs) for out-of-sample forecasts in
three-factor models from January 2009 to May 2013. The RMSPEs are computed by estimating the
three-factor models recursively and constructing 12-month ahead forecasts.
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