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Abstract

Temporal aggregation is known to affect the persistence of time series,
where persistence reflects, roughly speaking, the degree of positive se-
rial correlation. It is suggested to measure persistence as percentage
of the long-run variance not attributable to the variance (“long-run
variance difference ratio”). Here we study the aggregation of flow
variables as well as stock data, and difference-stationarity is allowed
for. Moreover, moving averages encountered e.g. when computing an-
nual growth rates (seasonal differences) are investigated. It is clarified
when persistence is increased or decreased, and by how much. Our
results are exact for finite aggregation level. They are illustrated with
numerical examples and real data. Approximate results for growing
aggregation level are provided, too.
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1 Introduction

Temporal aggregation is a standard routine when working with time series.

Even if the researcher does not aggregate him- or herself, the statistical offices

making available the data may only provide aggregates. Many stationary

time series display positive autocorrelation such that subsequent observations

form clusters: positive observations tend to be followed by positive ones,

while negative observations tend to induce negative ones. By persistence we

understand roughly speaking the strength of such a tendency, which depends

not only on the autocorrelation coefficient at lag one but also on higher order

lags.

It has been empirically documented e.g. by Rossana and Seater (1995)

that temporal aggregation affects persistence measures. But there is no clear

answer whether persistence is increased or decreased, and by how much. In

this paper we give an answer to these questions for the ratio of the difference

of the (long-run) variance as a relative persistence measure. The results are

exact for finite aggregation level and can be approximated with growing level.

They are illustrated with numerical examples, and it is demonstrated with

real data that they may explain aggregational effects in practice. Therefore,

we also allow for nonstationary series where differencing is required to obtain

stationarity. Moreover, we study the situation where seasonal growth rates

are stationary, but annual growth rates (seasonal differences) are computed

for convenience. Hassler and Demetrescu (2005) demonstrated experimen-

tally and empirically that annual growth rates will dramatically exaggerate

the degree of persistence relative to the persistence present in the seasonal

rates. Their arguments are reinforced here theoretically in a general frame-

work.
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We study the aggregation of both, stock variables and flow variables.

Typical flow data are monthly consumption, where temporal aggregation to

quarterly or annual data consists of cumulating the monthly flows to the total

quarterly or annual flow. Typical stock series are daily prices or interest rates.

In order to obtain e.g. weekly data, one may compute the average of all days

of the week, or alternatively, one may take the last weekday as representative

of the whole week (called skip sampling).

Econometricians started investigations into the effect of temporal aggre-

gation on the dynamic structure of time series a long time ago. Early results

for random walks were obtained by Working (1960), and for autoregressive

moving-average (ARMA) models by Brewer (1973) and Weiss (1984). A gen-

eral treatment of integrated (of order one) ARIMA models was provided by

Wei (1981) and Stram and Wei (1986); see also the review chapter in Wei

(1990). There seem to be no theoretical contributions, however, attacking

the effect of temporal aggregation on persistence. An early exception is re-

lated research for growing aggregation level by Tiao (1972), who proves that

the cumulation of a stationary series turns into white noise with growing

aggregation level. This suggests that cumulation reduces persistence at least

asymptotically with growing aggregation level. In summary of this literature,

it has been claimed that the effect of temporal aggregation on persistence in

finite samples is an empirical matter, see for instance Rossana and Seater

(1995), and more recently Paya, Duarte and Holden (2007), who employed

several widely used persistence measures as the sum of autoregressive coef-

ficients, the largest autoregressive root and (cumulated) impulse responses:

“statistical theory is not definite because some of the results are asymptotic

and leave open the question what will happen with actual data”, Rossana

and Seater (1995, p. 443).

Here, we argue that exact theoretical results on the aggregational effect

with respect to persistence are readily available when using relative mea-

sures, since aggregation affects both, the serial correlation and the variance.

We study the long-run variance ratio, which technically equals the normal-

ized spectrum at frequency zero and has been applied e.g. by Cogley and
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Sargent (2005), see also Cochrane (1988). We find that persistence is not a

characteristic property of an underlying process, but necessarily linked to the

frequency of sampling. In particular, we learn for aggregation of (integrated)

stock variables that skip sampling affects persistence very differently from

averaging.

The next section provides the notation, the assumptions and a way to

measure persistence, while Section 3 briefly reviews alternative aggregation

schemes. The fourth section contains the theoretical results on aggregation

and differencing with numerical illustrations. The theoretical results manage

to explain the aggregational effects observed with real data in Section 5. The

final section discusses implications for applied work in general. Proofs are

relegated to the Appendix.

2 Persistence

2.1 Under stationarity

The univariate time series data are assumed to be generated by a (covariance)

stationary process {yt}, where the autocovariances at lag h are denoted as

γ(h) = E[(yt − E(yt))(yt+h − E(yt+h))] = γ(−h) . (1)

The expectation µt = E(yt) may be constant, or e.g. seasonally varying,

or given by a time trend. The stochastic deviations are assumed to follow

a regular linear process with an absolutely summable sequence of impulse

responses {cj}.

Assumption 1 The process {yt}, t ∈ Z, is given by

yt = µt +
∞∑
j=0

cjεt−j with
∞∑
j=0

|cj| <∞ , c0 = 1 , and
∞∑
j=0

cj 6= 0 ,

where {εt} is a zero mean white noise process with variance Var(εt) = σ2.
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Next to the variance, Var(yt) = γ(0), we define the long-run variance

ω2 = LrV(yt) depending on all temporal correlation summarized in Γ(y):

LrV(yt) =
∞∑

h=−∞

γ(h) = Var(yt) + Γ(y) , Γ(y) = 2
∞∑
h=1

γ(h) . (2)

By Assumption 1, LrV(yt) is positive and finite; the limiting cases of LrV(yt) =

0 or LrV(yt) = ∞ arising from fractional integration are covered in Souza

(2005), Tsai and Chan (2005), and Hassler (2011). Under the above assump-

tions it holds that

γ(0) = σ2

∞∑
j=0

c2
j and LrV(yt) = σ2

(
∞∑
j=0

cj

)2

. (3)

Campbell and Mankiw (1987) popularized the cumulated impulse re-

sponses as measure of persistence,

CIR(y) =
∞∑
j=0

cj .

It does not rely on an autoregressive representation of finite order, and has

further been advocated by Andrews and Chen (1994) as being superior to

the largest autoregressive root in some cases. Note, however, that temporal

aggregation will affect both, the variance and the autocovariances behind Γ,

such that a priori the aggregational effect on CIR(y) is unclear.

In this paper, persistence is measured through the long-run variance dif-

ference ratio Π = LVDR:

Π(y) := LVDR(y) :=
LrV(yt)− Var(yt)

LrV(yt)
=

Γ(y)

LrV(yt)
= 1− Var(yt)

LrV(yt)
. (4)

A process is called persistent if Γ(y) > 0, and Π measures the percentage,

the cumulated autocovariances Γ(y) contribute to the long-run variance, or

equivalently: the percentage of the long-run variance not attributable to the

variance. If Γ(y) < 0, one may call the process anti-persistent, and Π(y)

measures by how much the variance exceeds the long-run variance, although
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the percentage interpretation is lost in this case. Closely related to the long-

run variance difference ratio Π from (4) is the variance ratio by Cochrane

(1988) containing essentially the same information

VR(y) :=
LrV(yt)

Var(yt)
=

1

1− Π(y)
. (5)

Of course, VR(y) equals the normalized spectrum at frequency zero employed

e.g. by Cogley and Sargent (2005).

Example 1 (ARMA(1,1)) Consider a stationary ARMA(1,1) process,

yt = a yt−1 + εt + b εt−1 = εt + (a+ b)
∞∑
j=1

aj−1εt−j , |a| < 1 , a 6= −b .

Clearly, for a < 0, the process tends to oscillate and hence shows no persistent
behavior. In the case of a > 0, however, the process is all the more persistent
the larger a is: yt tends to stay close to the past level yt−1, such that clusters
of subsequent observations arise. The other side of the coin of persistence is
that the effect of past shocks εt−j on the current level yt dies out the more
slowly the larger a is. The degree of persistence will be counter-balanced by
negative values of b. We now quantify how Π reflects this feature:

Π(y) = LVDR(y) = 1− (1− a) (1 + b2 + 2ab)

(1 + a) (1 + b)2
. (6)

In the white noise case (a = b = 0) the process is not persistent, Π = 0. But
with increasing 0 < a the percentage of the long-run variance not attributable
to the variance grows, up to Π = 100% in the limiting case of nonstationarity
(a = 1). If the process is a pure invertible MA(1), a = 0, |b| < 1, the
memory is much shorter and the impulse responses drop to zero after one
period. Hence, strong persistence cannot be modelled by means of an MA(1)
process. Although the long-run variance difference ratio is growing with b,
Π(y) = 2 b(1 + b)−2, it never exceeds 50%.

For applied work, Π has to be estimated from a sample of size T . The

consistent estimation of a (long-run) variance from stationary data is a stan-

dard problem of course. Consistent long-run variance estimation is discussed

e.g. in Hamilton (1994, Sect. 10.5).
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2.2 Under nonstationarity

Clearly, many time series are not stationary. It is often assumed that the

observed variable {zt} has to be differenced to obtain stationarity. With the

usual difference operator ∆ we define

∆rzt = yt , t = 1, 2, . . . , T , (7)

for some natural number r, where {yt} is a (weakly) stationary sequence

characterized in Assumption 1. In the case that r = 0, the observable {zt}
itself is covariance stationary, while r = 1 gives zt − zt−1 = yt. In most

applications the order of differencing is 1. In the case of nonstationarity (r >

0), the long-run variance difference ratio is computed in terms of stationary

differences:

Π(∆rz) = LVDR(∆rz) = 1− Var(∆rzt)

LrV(∆rzt)
.

In the case of r = 1, zt may be decomposed into a random walk rt and a

cyclical component ct integrated of order zero,

zt = zt−1 + yt = rt + ct ,

although such a decomposition is not unique. Cochrane (1988), however,

demonstrated that the input variance of the random walk is independently

of the specific decomposition given as Var(∆rt) = LrV(∆zt). Hence, Π(∆z)

measures the percentage of the random walk component exceeding the total

input variance if Var(∆rt) > Var(∆zt):

Π(∆z) =
Var(∆rt)− Var(∆zt)

Var(∆rt)
.

In many empirical applications, however, this ratio will be negative, simply

meaning that the difference are not persistent: Γ(∆z) < 0.

3 Temporal aggregation and differencing

Let {zt}, t = 1, 2, . . . , T , denote a sample of univariate time series observa-

tions to be aggregated over m periods. We assume for simplicity that T is a
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multiple of m, T = mN . The aggregate is constructed for the new time scale

τ . In the case of flow variables aggregation means cumulating m neighboring,

non-overlapping observations to determine the total flow over m sub-periods,

z̃τ := zmτ + zmτ−1 + . . .+ zm(τ−1)+1 , τ = 1, 2, . . . , N , (8)

where for the rest of the paper m ≥ 2 is an integer. With stock data two

aggregation schemes are encountered in practice. Often, stock variables are

averaged, which is formally related to the cumulation of stocks with obvious

notation: zτ = z̃τ/m. The usage of the new time scale τ indicates that the

averages are not overlapping. Alternatively, stock variables are sometimes

aggregated by systematic sampling or skip sampling where only every m’th

data point is observed,

żτ := zmτ , τ = 1, 2, . . . , N . (9)

If the basic variable {zt} is nonstationary as in (7), then the aggregates

will be nonstationary, too. Let ∇ stand for the differences operating on the

aggregate scale:

∇z̃τ = z̃τ − z̃τ−1 and ∇żτ = żτ − żτ−1 .

For the differenced aggregates {∇rz̃τ} and {∇rżτ} we define the persistence

measures as Π(∇rz̃) and Π(∇rż). Again, r = 0 refers to the situation where

zt = yt and hence z̃τ and żτ are stationary. Generally, it will make a difference

whether one first aggregates and differences the aggregates, or the other way

round, and the difference shall be spelled out in the next section.

Contrasting the case of non-overlapping averages, zτ , we also consider

moving averages of the following type:

Sm(L) zt , where Sm(L) = 1 + L+ · · ·+ Lm−1 .

The polynomial Sm(L) arises when computing seasonal differences ∆m :=

1 − Lm in order to obtain annual growth rates: ∆m = Sm(L) ∆. Let us

assume e.g. with m = 12 that the monthly growth rates ∆zt = yt are

8



stationary. Economically or statistically, one is often interested in annual

growth rates,

zt − zt−12 = yt + yt−1 + · · ·+ yt−11 ,

which are still stationary but considerably more persistent than the monthly

rates yt. The increase of persistence will be measured through Π(∆mz).

Now we are able to formalize the questions of this paper. Given an

underlying process {zt} with persistence Π(∆rz), how do Π(∇rz̃) and Π(∇rż)

computed from the r’th differences of the aggregates look like? What happens

for m getting large? And, finally, by how much is the persistence increased

when computed from annual growth rates rather than from seasonal rates?

4 Results

For the sake of clarity the presentation will be restricted to the empirically

most relevant cases r = 0 or r = 1, although the proofs given in the Appendix

treat the straightforward generalization for any integer r ≥ 0.

We start with the case where stationary data are aggregated.

Proposition 1 Let zt = yt, where {yt} satisfies Assumption 1 with autoco-
variances γ(h). It then holds

a) for {ẏτ}:

Π(ẏ) = 1− mVar(yt)

2π
m−1∑
j=0

f(2πj/m)

(10)

→ 0 as m→∞ ,

where f is the spectrum defined as

f(λ) =
1

2π

(
γ(0) + 2

∞∑
h=1

γ(h) cos(hλ)

)
;

9



b) for {ỹτ}:

Π(ỹ) = 1−
Var(yt) + 2

m−1∑
h=1

γ(h) m−h
m

LrV(yt)
(11)

→ 0 as m→∞ .

Proof See Appendix.

The results hold irrespective of whether LrV(yt) ≥ Var(yt) or not. The

interpretation below how persistence is affected by aggregation, however,

relies on Π ≥ 0.

Remark 1 From Proposition 1a) we observe that skip sampling stationary
processes tends to reduce the persistence with growing m, which is of course
very intuitive. For finite m, however, the exact effect is spelled out in (10).
For an illustration with a stationary AR(1) process with m = 1, 2, . . . , 20
see Figure 1, where m = 1 corresponds to no aggregation. With a moderate
autoregressive parameter of a = 0.7 the percentage of the long-run variance
not attributable to the variance drops from roughly 81% (for m = 1) to
virtually 0 (for m = 20).

Remark 2 From Proposition 1b) we learn that cumulation of stationary
processes tends to reduce the persistence with growing m, too, which is
not surprising given that Tiao (1972) established that an MA(q) process
turns into white noise with growing aggregation level, see also Hassler and
Tsai (2013). For finite m we further quantify the exact effect in (11). It
is illustrated with a stationary AR(1) process in Figure 2 for a moderate
autoregressive parameter a = 0.7. The percentage of the long-run variance
not attributable to the variance drops from roughly 81% (for m = 1) to 15%
(for m = 20). So, the aggregational effect is not quite as strong as in the
case of skip sampling.

Remark 3 Since we work with relative measures, the results with respect to
cumulation continue to hold without modification in case of averaging stock
variables:

Π(∇rz̃) = Π(∇rz) = 1− Var(∇rzτ )

LrV(∇rzτ )
,

where r = 0 in Proposition 1, or r = 1 below.
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Figure 1. Π(ẏ) for yt = 0.7 yt−1 + εt
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Figure 2. Π(ỹ) for yt = 0.7 yt−1 + εt
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Proposition 2 Let ∆zt = yt, where {yt} satisfies Assumption 1 with auto-
covariances γ(h). It then holds

a) for {∇żτ}:
Π(∇ż) = Π(ỹ) ,

with Π(ỹ) from Proposition 1;

b) for {∇z̃τ}:

Π(∇z̃) = 1−
Var(yt)

2m−2∑
i=0

b2
i + 2

2m−2∑
h=1

[
γ(h)

2m−2−h∑
i=0

bibi+h

]
m3 LrV(yt)

(12)

→ 1

3
as m→∞ ,

where

b0 = 1, b1 = 2, . . . , bm−1 = m, bm = m− 1, . . . , b2m−2 = 1 .

Proof See Appendix.

Remark 4 Differencing and aggregation are not exchangeable. Think of
an integrated process, r = 1 in (7). Differencing after cumulation corre-
sponds to the case Proposition 2b), while cumulating differences is covered
by Proposition 1b). Similarly, in case of skip sampling: Π(∇ż) 6= Π(ẏ).

Remark 5 With differenced aggregates the effect of cumulation depends,
see Proposition 2b): If {∆zt} has Π(∆z) < 1/3, then cumulation of the
I(1) level will tend to exaggerate persistence (at least for large m), while for
Π(∆z) > 1/3 a downward bias will be observed. Figure 3 depicts Π(∇z̃)
from (12) with a random walk: For m = 1, the differences are white noise,
i.e. not persistent (Π = 0), but the limiting value 1/3 is approached very
fast with growing m.
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Figure 3. Π(∇z̃) for zt = zt−1 + εt

Remark 6 Stock data may be aggregated by skip sampling or averaging.
The way how persistence is affected may differ dramatically. If the stock
data at hand are integrated of order one (r = 1), then skip sampling results
by Proposition 2a) in Π(∇ż) = Π(ỹ), while averaging yields Π(∇z) = Π(∇z̃).
If the random walk from Remark 5 is averaged, then Figure 3 is reproduced;
if the random walk is skip sampled, then the persistence is not affected:
Π(∇ż) = Π(∆z) = 0, since all γ(h) = 0 on the right-hand side of (11). But
skip sampling cannot generally be preferred to averaging. Just as in Remark
5 it holds: Whether Π(∇z) (with limit 1/3) or Π(∇ż) (with limit 0) is closer
to the persistence of the underlying process depends on the value Π(∆z)
characterizing {zt}.

Finally, we turn to the effect of computing annual growth rates on per-

sistence.

Proposition 3 Let ∆zt = yt, where {yt} satisfies Assumption 1 with auto-
covariances γ(h). It then holds for ∆mzt:

Π(∆mz) = 1 +
Π(ỹ)− 1

m
(13)

→ 1 as m→∞ ,

where Π(ỹ) is from Proposition 1.

Proof See Appendix.
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Remark 7 In order to illustrate (13), let us assume that ∆zt = yt is white
noise and m = 12. This means that monthly growth rates are free of per-
sistence, Π(∆z) = 0. One obtains Π(ỹ) = 0 by Proposition 1, and hence by
Proposition 3 that Π(∆12z) = 0.9167. This is the same value produced by
(6) for a = 0.846 and b = 0. In other words: Annual growth rates computed
from a monthly random walk are as persistent as an AR(1) process with
autoregressive parameter a = 0.846, although the seasonal growth rates are
free of persistence. Such spurious persistence has been observed by Hassler
and Demetrescu (2005), who argued that evidence in favour of unit roots in
annual growth rates might be caused that way.

5 Empirical application

In order to illustrate the usefulness of Propositions 1 through 3 we use some

textbook time series where the data generating process behind {zt} is as-

sumed to be known or at least to be widely acceptable. We next aggregate

(and difference) the data, predict what the persistence of the (differenced)

aggregate should be like in view of our theory, and compare this value with

direct estimates obtained from the aggregates. The direct estimation relies

on

Π̂ = 1− γ̂(0)

ω̂2
,

where ω̂2 is a consistent estimator of ω2 = LrV(∆rzt) = LrV(yt). For a kernel

or window wB depending on a bandwidth B one has

ω̂2 = γ̂(0) + 2
T−1∑
h=1

wB(h) γ̂(h) , (14)

building on consistent estimates γ̂(h). The long-run variance estimation is

performed in EViews 7.2 where ω̂2 builds on a Bartlett kernel in (14) with au-

tomatic bandwidth selection according to Newey and West (1994). Through-

out, we consider stock data, where aggregation may consist of averaging (with

the same effect as cumulating) or skip sampling.
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Random Walk

The return series on efficient markets should be serially uncorrelated.

Consequently, Kirchgässner, Wolters and Hassler (2013, Ex. 1.3) demon-

strate with monthly data from 1974.01 till 2011.12 that the log-differences of

the exchange rate {et} between the Swiss Franc and the U.S. dollar follow a

white noise process. This means that {zt} with zt = log(et) follows a random

walk. In the case of a random walk, where {∆zt} = {yt} is white noise,

one obtains no persistence from differences: Π(∆z) = 0. Direct estimates of

Var(yt) and LrV(yt) yield in this example with T = 456 observations

Π̂(∆z) = 1− σ̂2/ω̂2 = 0.0327 ≈ 0 ,

which backs the random walk specification in levels.

Next, we aggregate the data to quarterly series (m = 3). First, Proposi-

tion 2a) yields for a random walk in case of skip sampling that Π(∇ż) = 0.

This value very well explains the direct estimate obtained from {∇żτ}, which

is Π̂(∇ż) = 0.01. Second, when averaging a random walk we expect by

Proposition 2 in connection with Remark 3 because of γ(0) = LrV(∆z):

Π(∇z) = 1− γ(0) [m2 + 2 (12 + 22 + · · ·+ (m− 1)2)]

m3γ(0)

=
1

3
− 1

3m2
.

Consequently, in our random walk example with m = 3: Π(∇z) = 0.30.

This value is reasonably close to the direct estimate obtained from {∇zτ}:
Π̂(∇z) = 0.26. Third, we compute quarterly returns, ∆3zt. Theoretically,

we expect from Proposition 3: Π(∆3z) = 1 − 1/3 = 0.67, see Remark 7. In

very close correspondence, the direct estimate yields Π̂(∆3z) = 0.68.

In summary, the random walk assumption for the Swiss-U.S. exchange

rate data yields: Persistence in the monthly log-exchange rate data is con-

served upon skip sampling, but strongly exaggerated in the case of averaging;

similarly, quarterly returns tremendously overdo the persistence present in

monthly returns. See Table 1 for a numerical summary.
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Table 1. Persistence in aggregates of exchange rate (random walk)

Π(∆z) Π(∇ż) Π(∇z) Π(∆3z)
direct

estimation 0.03 0.01 0.26 0.68

Prop.s 2 and 3 0.00 0.00 0.30 0.67

Notes: Estimates of Π from monthly data z and quarterly aggregates (m = 3: average z and skip
sampled ż), and quarterly differences (∆3z); direct estimates from differences with Bartlett kernel and
automatic bandwidth selection in (14) compared with theoretical values based on the random walk
model and Propositions 2 and 3.

Stationary AR(1)

As an example for a stationary AR(1) series, zt = yt, Kirchgässner et al.

(2013) use the monthly data on the popularity of the Christian Democratic

Party in Germany. This popularity series consists of the share of voters

who answered they would vote for this party if there were federal elections

the following Sunday. The monthly data range from December 1970 to April

1982. Popularity is another example of stock data. We compute and compare

quarterly aggregates (m = 3) by averaging and skip sampling.

For the monthly data {yt} Kirchgässner et al. (2013, Ex. 2.2) estimate

yt = 8.053 + 0.834 yt−1 + ε̂t , t = 1, ..., 136 . (15)

Example 1 yields for a = 0.834 and b = 0: Π(y) = 0.91. Direct estimates of

Var(yt) and LrV(yt) yield

Π̂(y) = 1− σ̂2/ω̂2 = 0.90 ,

which strongly supports the AR(1) specification.

Now, the data are aggregated to quarterly series, m = 3. When averaging

an AR(1) process from Example 1 we obtain by Remark 3

Π(y) = 1− (1− a)2

1− a2

(
1 + 4

a

3
+ 2

a2

3

)
.
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Consequently, in our data example with a = 0.834: Π(y) = 0.77. This value

is reasonably close to the direct estimate obtained from {yτ}: Π̂(y) = 0.73.

Similarly, Proposition 1a) yields for an AR(1) process with spectral density

2π f(λ) =
σ2

1− 2a cos(λ) + a2

that

Π(ẏ) = 1− 3 (1− a2)−1

(1− a)−2 + 2 (1 + a+ a2)−1
.

Consequently, we predict for the popularity series with a = 0.834: Π(ẏ) =

0.73. This value well explains the direct estimate obtained from {ẏτ}, which

is Π̂(ẏ) = 0.69.

To summarize this example: We observe that the persistence in the

monthly stock data is reduced from 0.90 to 0.73 and 0.69 in case of aver-

aging and skip sampling to quarterly data, respectively. Taking for granted

that the popularity series is generated from an AR(1) process, those reduc-

tions in persistence are well explained by Proposition 1. For a numerical

summary see Table 2.

Table 2. Persistence in aggregates of party popularity, AR(1)

Π(y) Π(y) Π(ẏ)
direct

estimation 0.90 0.73 0.69

Prop. 1 0.91 0.77 0.73

Notes: Estimates of Π from monthly data y and quarterly aggregates (m = 3: average y and skip
sampled ẏ); direct estimates with Bartlett kernel and automatic bandwidth selection in (14) compared
with theoretical values based on (15) and Proposition 1.

6 Summary

Temporal aggregation of time series affects the serial correlation as well as the

variance. Therefore, we advocate to measure persistence in relative terms,
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namely as percentage of the long-run variance not due to the variance (“long-

run variance difference ratio”). It turns out that persistence is inherently

linked to the sampling frequency and hence inevitably affected by aggrega-

tion. Aggregation covers cumulation of flow variables, as well as averages

and end-of-period aggregates in the case of stock data. On top, we quan-

tify the effect on persistence when computing annual growth rates (seasonal

differences) instead of seasonal growth rates (usual differences).

We exactly quantify the effect of aggregation and differencing in terms

of the autocovariances of the underlying basic process, and approximations

are available for growing aggregation level. With numerical examples, the

following results are illustrated. Differencing and aggregation are not ex-

changeable (see Remark 4). If one cumulates a stationary flow variable, the

persistence will tend to be reduced and converge to zero with growing ag-

gregation level, see Remark 2. This is even more true when skip sampling

stationary stock data (Remark 1). On the contrary, if one differences a flow

variable after cumulation, the persistence will tend to 1/3 and will hence

be over-estimated (under-estimated) if it is smaller (larger) in the underly-

ing series without aggregation (Remark 5). If stock variables are averaged

this has the same effect as cumulating flows (Remark 3). Skip sampling,

on the other hand, has under nonstationarity the same effect as cumulation

under stationarity (Remark 6). Generally, one observes that no aggregation

method is always superior to the other ones, because the aggregation effect

of a certain method inevitably depends on the autocorrelation structure of

the data at hand. Lastly, annual growth rates as seasonal differences will

exaggerate the persistence of seasonal growth rates sizeably (Remark 7).

Although it is impossible to provide general guidelines how to best aggre-

gate in practice, we stress that our results are relevant for empirical research.

With real data at hand the effect of temporal aggregation on persistence mea-

sured as long-run variance difference ratio can be explained and predicted for

an arbitrary aggregation level. The explanation is exact in theory, but will

be confined in practice by estimation errors of course, as we demonstrate

with example series.
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Appendix

A lemma

Most of the above results build on the following lemma.

Lemma 1 Let {zt} solve for some natural number r ∈ {0, 1, 2, . . .} the dif-
ference equation (7), where {yt} satisfies Assumption 1 with autocovariances
γ(h). It then holds

a) for finite m ≥ 2 with n = m− 1:

Π(∇rz̃) = 1−
Var(yt)

∑rn+n
i=0 b2

r,i + 2
∑rn+n

h=1

[
γ(h)

∑rn+n−h
i=0 br,ibr,i+h

]
m2r+1 LrV(yt)

where br,0 through br,rn+n are defined through the expansion

rn+n∑
i=0

br,i L
i =

r+1∑
k=0

(
r + 1

k

)
[LSm−1(L)]k

with Sm(L) = 1 + L+ · · ·+ Lm−1;

b) and as m→∞:

Π(∇rz̃) → 1− 1

(2r + 1)!

r∑
k=0

(−1)k
(

2r + 2

k

)
(r + 1− k)2r+1 .

Proof From Hassler (2011, Lemma 2) it follows LrV(∇rz̃τ ) = m2r+1LrV(yt),

such that

Π(∇rz̃) = 1− Var(∇rz̃τ )

m2r+1LrV(yt)
, (16)

where ∇rz̃τ = [Sm(L)]r+1 ymτ . With Sm(L) = 1 +LSm−1(L) one obtains the

given expansion [Sm(L)]r+1 =
∑(r+1)(m−1)

i=0 br,iL
i, such that result a) becomes

obvious. From Hassler and Tsai (2013, Corollary 3) we know

V ar (∇rz̃τ )

m2r+1
→ LrV(yt)

1

(2r + 1)!

r∑
k=0

(−1)k
(

2r + 2

k

)
(r + 1− k)2r+1

as m→∞. With (16) the proof of the lemma is complete. �
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Proof of propositions

Proposition 1 The first statement a) for skip sampling under r = 0 is

covered by the multivariate results in Hassler (2013, Lemma A, Prop. 3).

The result b) is elementary to establish in view of Lemma 1. Hence, the

proof is complete.

Proposition 2 For a) we note the following relation between skip sampling

and cumulation under differencing: skip sampling first and then differencing

amounts to first differencing and then cumulating, or formally ∇żτ = ∆̃zτ .

In fact, this result extends to r ≥ 1:

∇rżτ = ∇r−1∆̃zτ , r = 1, 2, . . . , (17)

i.e. differencing a skip-sampled I(r) process r times coincides with differ-

encing a cumulated I(r − 1) process r − 1 times: Π(∇rż) = Π(∇r−1∆̃z),

which yields a). The result b) is elementary to establish in view of Lemma

1. Hence, the proof is complete.

Proposition 3 By definition it holds Var(∆mzt) = Var(ỹτ ), because ∆mzt =

Sm(L)yt under the assumption of Proposition 3. Similarly, it holds for the

spectrum f∆mz(λ) = |S(e−iλ)|2fy(λ) with i2 = −1, such that f∆mz(0) =

m2fy(0) or LrV(∆mzt) = m2LrV(yt). Hence, by Hassler (2011, Lemma 2),

LrV(∆mzt) = mLrV(ỹτ ), and it is straightforward to complete the proof.
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