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Abstract

We propose a widely applicable bootstrap based test of the null hypothesis of equality of
two firms’ Risk Measures (RMs) at a single point in time. The test can be applied to any
market-based measure. In an iterative procedure, we can identify a complete grouped
ranking of the RMs, with particular application to finding buckets of firms of equal
systemic risk. An extensive Monte Carlo Simulation shows desirable properties. We
provide an application on a sample of 94 U.S. financial institutions using the ∆CoVaR,
MES and %SRISK, and conclude only the %SRISK can be estimated with enough
precision to allow for a meaningful ranking.
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1. Introduction

Financial risk management is fundamentally based on the comparison of a given
risk measure for different assets, portfolios or financial institutions. Many examples
can be cited: the comparison of the market risk for two portfolios, measured by their
volatilities, their value-at-risk (VaR) or their expected shortfall (ES), the comparison
of the systematic risk of two assets measured by their beta, the comparison of the
systemic risk of two financial institutions according to a systemic risk measure or a
score of systemic importance (Basel Committee on Banking Supervision, 2013) and
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many others. When one considers an unconditional risk measure, this comparison
can be achieved through parametric or non-parametric tests. These tests exist for
a variety of standard (unconditional) risk measures; the most famous being tests for
equal variances. However, most of the risk measures are expressed conditional on an
information set available at time t and the corresponding forecasts are generally issued
from a dynamic (semi-)parametric model. For instance, we can cite the conditional
VaR and ES forecasts derived from a (M-)GARCH model or the dynamic conditional
beta (Engle, 2012). In these cases, the conditional distribution of the estimated risk
measure is generally unknown and depends on the actual estimation procedure used
for the model parameters.

In this paper, we propose a general testing framework that takes into account
parameter uncertainty to statistically test for equality of conditional risk measures
for different financial units (assets, portfolios or financial institutions). We propose
two types of tests. First, we propose a bootstrap-based test of equality for a general
class of conditional risk-measures at a single point in time, or over a longer horizon of
forecasts. This test can be applied to a wide class of risk measures, estimated by almost
any (semi-)parametric model. For example, it can be used to compare the market risk
measured by a conditional VaR, ES or volatility for two portfolios or two banks. It
can be used to test the relative level of systemic risk for two banks, to compare the
systematic risk of two portfolios or the liquidity risk of two different assets. It can also
be applied in order to test the equality of a conditional risk measure (for instance the
VaR) issued from two different models (say, GARCH and RiskMetrics) for the same
asset or the same portfolio.

Second, we propose a generalized procedure aiming at grouping units that are sta-
tistically indistinguishable in terms of their riskiness. The method is inspired by the
Model Confidence Set of Hansen et al. (2011). This bucketing procedure can be applied
to any type of risk measure but has particular application for systemic risk measures.

The financial crisis has renewed the interest in measuring systemic risk and specif-
ically in the identification of the global systemically important banks (G-SIBs).2 As
they pose a major threat to the financial system, regulators and policy makers from
around the world have called for tighter supervision, extra capital requirements, and
liquidity buffers for these G-SIBs (Financial Stability Board, 2011). However, the task
of measuring the degree of systemic risk and determining how much capital is needed
for each financial institution is a difficult one. Even though the Basel Committee pro-
poses a score of systemic risk for the banks, it recognizes the inevitable uncertainty in
the measure and decided to classify banks into buckets, groups of banks representing
roughly equal risk (BCBS, 2013).

Meanwhile, academics have been less cautious. Many measures of systemic risk
have been proposed over the past years, the most well-known being the Marginal Ex-
pected Shortfall (MES) and the Systemic Expected Shortfall (SES) of Acharya et al.
(2010), the Systemic Risk Measure (SRISK) of Acharya et al. (2012) and Brownlees

2Also called systemically important financial institutions (SIFIs).
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and Engle (2011), and the Delta Conditional Value-at-Risk (∆CoVaR) of Adrian and
Brunnermeier (2011). They all try to summarize systemic risk into one single number.
This has a lot of appeal as there exists an automatic ordering of the financial institu-
tions according to their systemic risk. Generally, the authors then proceed to produce
exactly such a list, implying their measures can be used to obtain an exact ranking in
real time (with a daily or weekly frequency) that can be compared to the list of G-SIB
published once a year by the BCBS. However, claiming that firm A is more risky than
firm B, simply because its systemic risk measure is marginally higher, implies that they
are estimated with perfect accuracy. This is certainly not the case. These measures
rely on publicly available market data (stock returns, option prices, or CDS spreads)
supposed to reflect all information about publicly traded firms and require relatively
sophisticated estimation techniques, such that even if the model is correctly specified,
there is still a lot of parameter uncertainty. Indeed, there is convincing evidence that
the signal produced by the systemic risk measures are not reliable and have large un-
certainty (e.g. Danielsson et al., 2011). If this is taken into account it is unlikely that
one can discern such an absolute ranking.

We are aware of only one other paper that statistically compares firms in terms
of systemic riskiness. Castro and Ferrari (2011) propose a method within the linear
quantile regression framework of testing whether or not two firms differ in terms of
their ∆CoVaR. Our method is more general; it works for any market-based measure,
and allows for conditional, or time-varying, versions of the risk measures.

The paper is structured as follows: Section 2 first gives some definitions and defines
the general framework. Section 3 establishes hypotheses and the test. Section 4 dis-
cusses the bootstrap implementation. Section 5 gives simulation results, showing the
procedure has desirable properties: appropriate size and high power. Finally, Section
6 provides an empirical application on 94 of the largest financial institutions in the
United States.

2. Methodology

Our aim is to propose a general framework to statistically test for equality of two
conditional risk measures obtained for two different assets, portfolios or financial insti-
tutions. Consider a financial unit (firm, asset or portfolio) indexed by i and a Fi,t−1-
conditional risk measure (denoted RM) issued from a dynamic parametric model, where
Fi,t−1 denotes the information set available at time t − 1. Formally, we define RM as
follows:

RMi,t = fi (θi, ω;Xi,t−1) , (1)

where fi (.) denotes a functional form that depends on (i) the risk measure itself (for
instance, the VaR) and (ii) the parametric model used to produce the corresponding
forecast (for instance, a GARCH model). Xi,t−1 is a set of variables belonging to Fi,t−1,
θi is the vector of model’s parameters and ω is a vector of parameters specific to the
risk measure itself. The latter parameters are generally determined by the user. For
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instance, in the case of the VaR, it corresponds to the risk level, generally fixed to 1%
or 5% by convention.

The notation for RMi,t encompasses a wide class of parametric risk measures asso-
ciated to asset’s and portfolio’s profit and losses (P&L) or to a financial firm (in the
case of the systemic risk analysis). The RM can for instance be a measure of price
variation (conditional volatility), a systematic risk measure (beta), a tail risk measure
(VaR, ES), or a systemic risk measure (MES, SRISK, ∆CoVaR). The model can be a
univariate or a multivariate GARCH model, a quantile or a linear regression model,
etc. Hence, this notation can be viewed as a generalization of that used by Gourieroux
and Zaköıan (2013) for parametric VaR models.3

RM is indexed by t, implying we exclude the test of equality of unconditional risk
measures. This is not very restrictive as these tests exist for a variety of standard
unconditional risk measures; e.g. a test for equal variances. The index i in fi(.)
means that we allow for different functional forms for financial units i and j. The
risk measure will obviously be common to the two units, but one may use different
models to produce the forecasts. For instance, the procedure allows the comparison
of the conditional VaR for Bank of America obtained from a GARCH model, and the
conditional VaR of Citibank using an internal model based on RiskMetrics. Similarly,
one could also test for equality of two different models applied to the same unit.

As examples of the notation we consider (i) a conditional VaR based on a student
GARCH model, (ii) the ES based on a Gaussian GJR-GARCH, (iii) the conditional
MES of Acharya et al. (2010) and Brownlees and Engle (2011) and (iv) the SRISK of
Acharya et al. (2012) and Brownlees and Engle (2011). The last two cases correspond
to well-known systemic risk measures based on a GARCH-cDCC and non-parametric
tail-estimators.

Example 1 (VaR-GARCH) Consider a demeaned return process ri,t associated to
an asset or a portfolio indexed by i. If we assume a t-GARCH(1,1) model for demeaned
returns ri,t, the corresponding conditional VaR(α) can be expressed as a linear function
of the conditional volatility σi,t|t−1 of the returns as follows:

fV aRi (θi, ω;Xi,t−1) = −t−1
ν (α)

√
v − 2

v
σi,t|t−1,

with σ2
i,t|t−1 = γi + αiε

2
i,t−1 + βiσ

2
i,t−1, with εi,t = ri,t/σi,t and t−1

ν (α) is the α−quantile

of the standardised student cdf with ν degrees of freedom. As such θi = {γi, αi, βi, ν},
ω = {α} and Xi,t−1 = {r̃i,t−1}, where r̃i,t−1 is the set of return observations for firm
i up to time t− 1.

3In the univariate case, assuming a conditional normal distribution, they define the conditional
VaR as V aRt (α) = −g

[
yt; θ,Φ

−1 (α)
]

where yt denotes the P&L at time t, θ the vector of model’s
parameters and g (.) is a functional form that depends on the model.
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Example 2 (ES-AR-GJR-GARCH) Consider an AR(1)-GJR-GARCH(1,1) model
for demeaned returns ri,t. The conditional ES(α) is then defined as follows:

fESi (θi, ω;Xi,t−1) = −µi,t + λ
(
Φ−1 (1− α)

)
σi,t|t−1,

with µi,t = φiri,t−1 and σ2
i,t|t−1 = γi + α1iε

2
i,t−1 + α2iI{εi,t−1<0}ε

2
i,t−1 + βiσ

2
i,t−1, where

εi,t = (ri,t − µi,t)/σi,t. λ(z) = φ(z)/Φ(z) corresponds to the Mills ratio where φ (.) and
Φ (.) denote respectively the pdf and the cdf of the standard normal distribution. Then
we get θi = {γi, α1i, α2i, βi}, ω = {α} and Xi,t−1 = {r̃i,t−1} .

Example 3 (MES) The MES is the marginal contribution of an institution i to sys-
temic risk, as measured by the ES of the financial system. The market return is denoted
rm,t =

∑N
i=1wi,tri,t, with wi,t the value-weight of firm i at time t, and ri,t demeaned firm

returns. The conditional MES is defined by the first derivative −∂Et−1(rm,t | rm,t <
C)/∂wi,t, where C is a threshold (generally equal to the market VaR). In order to esti-
mate the MES, following Brownlees and Engle (2011), if the vectorial process (ri,t rm,t)

′

follows a GARCH-DCC we get:

fMES
i (θi, ω;Xi,t−1) = σi,t|t−1ρim,t|t−1Et−1(εm,t|εm,t < C/σm,t|t−1)

+ σi,t|t−1

√
1− ρ2

im,t|t−1Et−1(εi,t|εm,t < C/σm,t|t−1),

where σ2
i,t|t−1 = γi + αiε

2
i,t−1 + βiσ

2
i,t−1, ρim,t|t−1 = Qim,t|t−1/

√
Qii,t|t−1Qmm,t|t−1 with

Qij,t the (i, j)th element of Qt, and Qt|t−1 = (1 − αC − βC)Q̄ + αCεt−1ε
′
t−1 + βCQt−1,

with εi,t = ri,t/σi,t. Brownlees and Engle (2011) consider a non-parametric estimator
(Scaillet, 2005) for the tail expectations of the standardized returns εt. Then we have
θi = {γi, γm, αi, αm, βi, βm, Q̄, αC , βC}, ω = {C} and Xi,t−1 = {r̃i,t−1, r̃m,t−1}.

Example 4 (SRISK) The SRISK is defined as the expected capital shortfall of a given
financial institution, conditional on a crisis affecting the whole financial system. The
daily conditional SRISK can be defined as follows:

fSRISKi (θi, ω;Xi,t−1) = max
(
0 ; k Di,t−1 − (1− k)Wi,t−1

(
1− LRMESi,t|t−1

))
,

where Di,t and Wi,t denote the book value of total liabilities and the market value of the
financial institution respectively. k is a prudential capital ratio and LRMESi,t|t−1 =
1−exp(−18MESi,t|t−1) denotes the conditional marginal expected shortfall, extrapolated
to a full-blown crisis over half a year (see Brownlees and Engle (2011)). MESi,t|t−1

is the estimate of the Marginal Expected Shortfall for firm i at time t as defined in
Example 3, which can be estimated through fMES

i (θi, ω;Xi,t−1). Then we have θi =
{γi, γm, αi, αm, βi, βm, Q̄, αC , βC}, ω = {C, k} and Xi,t−1 = {r̃i,t−1, r̃m,t−1, Di,t−1,Wi,t−1}.
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3. Hypotheses of Interest and Test

In this section, we present two types of tests for the conditional risk measures: (i)
a comparison test of two risk measures and (ii) a bucketing procedure.

3.1. A Comparison Test of Risk Measures

We wish to test whether two financial units, indexed by i and j, present the same
level of risk at time t with respect to the conditional risk measure RM. We assume that
the considered risk measure satisfies the axiom of monotonicity (Artzner et al., 1997,
1999), i.e., if the unit i is strictly riskier than the unit j, then RMi,t < RMj,t. To fix
the notations, let us define Ft−1 = Fi,t−1 ∪ Fj,t−1 the information set available at time
t − 1 for the two units and a Ft−1-conditional relative riskiness variable denoted xij,t
with:

xij,t ≡ RMi,t −RMj,t. (2)

The null hypothesis is:
H0 : E (xij,t | Ft−1) = 0. (3)

The alternative hypothesis can be expressed as H1 : E (xij,t | Ft−1) 6= 0 meaning that
the risk of financial unit i is different from the risk of unit j, at time t according to
the measure RM. The testing framework is clearly very general as it works for any
specification of fi(). It can be applied to any conditional (monotonic) risk measure
and is relevant in many practical cases in finance.

The similarity to the literature devoted to the comparison of forecasts (Diebold
and Mariano, 1995; Hansen, 2005) is clear. But, although there are many parallels,
our hypothesis and test differ in some important ways. In most cases, i and j do
not represent competing models, but they represent different financial units (assets,
portfolios, financial institutions etc.). Second, we do not compare the forecast to an ex-
post observation. Finally, and most importantly, we test for equality of the conditional
expectation of two single forecasts, i.e. the conditional risk measures at time t, not
means of series.

In the case where our test is used to compare the forecasts of the same risk measure
issued from two alternative models, there are also some similarities with the literature
devoted to the volatility forecasting comparison (Hansen and Lunde, 2006; Patton,
2011). But the two approaches differ in some important ways. First, our test can be
applied to any conditional risk measure and is not specific to the conditional volatility.
Second, our test is not designed to determine the ‘best’ model: the test investigates
whether there is enough information in the data to claim that two models are producing
significantly different risk forecasts for a single observation. Third, our approach does
not require the use of a proxy variable for the risk measure. Note that for most risk
measures (except volatility), such proxy variables are not available yet.

Finally, note that the proposed framework can be extended to test the equality of
risk measure forecasts for a horizon h > 1, either as single estimate, or as aggregate∑h−1

i=0 RMi,t−h−RMj,t−h, by considering a smaller information set Ft−h= F i,t−h∪Fj,t−h.
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Testing the hypothesis described in (3) is challenging in many respects. First,

the conditional distribution of the estimated risk measure R̂M i,t = fi

(
θ̂i, ω;Xi,t−1

)
is

generally unknown or may be difficult to obtain depending on the actual estimation
procedure used for θ̂i.

4 The estimates are typically obtained using (M)GARCH-type
models, for many of which their estimates’ distribution is unknown. Second, even if
the conditional distributions of the both estimators R̂M i,t and R̂M j,t are known, the
distribution of the difference x̂ij,t is generally unknown because the joint distribution

is rarely known (except in the trivial but unlikely case of independence between θ̂i
and θ̂j). This is clearly the case when we compare two RM forecasts issued from two
alternative models for the same asset. Francq and Zaköıan (2012) offer a very specific
case where we have a result for GARCH processes. However, a delta method is needed
to go from θ to the RM , and there is no result for the possible dependence between θi
and θj.

One could circumvent these problems by relying on a central limit theorem and
showing asymptotic normality of the test statistic under the null. This could be done
by taking time averages of x̂ij,t, but this is not appropriate in our case. The values of
the measures change a lot over time, and moreover, there is no reason to believe the
relative ordering (for the true values of RMi,t and RMj,t) is constant over time. We
therefore only have the single forecast for x̂ij,t.

These restrictions mean that we cannot use traditional testing methods. Instead,
we use the assumed data generating process (DGP) to bootstrap the conditional risk
measures and obtain their distribution. We therefore propose the following two-sided
test statistic:

T (α) ≡ |x̂ij,t|
c∗ij,t(α)

, (4)

where c∗ij,t(α) is the bootstrap critical value obtained from the absolute null-value
shifted bootstrap distribution of x̂ij,t. The use of the critical value means that the
α% rejection point for all combinations of financial units (i, j) is scaled to 1. Rejection
thus occurs at the α% level if T (α) > 1. Ex-post one may draw conclusions on which
is the riskiest based on the sign of xij,t

5.
We work under the assumption that the bootstrap is asymptotically valid for the

risk measures considered, in the sense that the bootstrap correctly reproduces the
asymptotic distribution of the risk measure estimator. While this validity cannot be
established in general due to the absence of results about the asymptotic distributions
of the estimators of the parameters θi, we expect the bootstrap to be valid for “well-
behaved” estimators. In particular, if the estimators are

√
T -consistent and asymp-

totically normal, as they are for the class of risk measures considered by Francq and

4We assume that the parameters ω specific to the risk measure are predetermined.
5The absolute value is not necessary for the single test, and a general version T (α) = x̂ij,t/c

∗
ij,t(α)

may be considered, taking into account that the left and right tail of the distribution may differ. The
absolute version will however facilitate the procedure in the multiple comparison setting outlined in
the next section.
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Zaköıan (2012), we conjecture the bootstrap to be asymptotically valid. Our simulation
study in Section 5 supports this conjecture.

3.2. Bucketing Procedure

An increasingly important aspect of risk management is the measurement of sys-
temic risk (see Bisias et al., 2012, for a survey). The general idea of this literature is
that the financial institutions contributing the most to the risk of the financial sys-
tem (the G-SIBs or SIFIs) will be subject to more intense supervision and will have
to maintain more regulatory capital. In practice, there are two ways to measure the
contribution of a given firm to the overall risk of the system. A first approach, called
the Supervisory Approach, relies on firm-specific information on size, leverage, liquid-
ity, interconnectedness, complexity, and substitutability. In this specific context, the
latest draft released by the Basel Committee on Banking Supervision (BCBS, 2013)
recommends to classify the financial institutions according to a score of systemic im-
portance. Based on their systemic risk score, banks are allocated into five buckets that
correspond to specific higher loss absorbency requirement.6

A second approach relies on publicly available market data, such as stock returns,
option prices, or CDS spreads, as they are believed to reflect all information about
publicly traded firms. Four prominent examples of such measures are the Marginal
Expected Shortfall (MES) and the Systemic Expected Shortfall (SES) of Acharya et al.
(2010), the Systemic Risk Measure (SRISK) of Acharya et al. (2012) and Brownlees
and Engle (2011), and the Delta Conditional Value-at-Risk (∆CoVaR) of Adrian and
Brunnermeier (2011). These measures are based on sophisticated econometric models
and estimation methods designed to measure the dependence between firm and market
returns. Even if these models are correctly specified, there is still a lot of parameter
uncertainty. For this reason, the market-based approach requires a procedure that
allows to classify banks into buckets, groups of banks representing roughly equal risk,
as it is done in the BCBS’s approach.

For these reasons, we propose an iterative bucketing procedure that can be used
to obtain a grouped ranking, or buckets, of financial units. The objective is to get
a complete ranking by means of a procedure inspired by the Model Confidence Set
of Hansen et al. (2011). Our procedure produces buckets of equally risky units, in
the sense that we cannot statistically distinguish the units within one bucket in terms
of their riskiness.7 This testing procedure can be applied to any type of monotonic
risk measure (market risk, liquidity risk, etc.), but it has particular application in the
context of the systemic risk.

6There are four populated equally sized buckets (1 to 4), with an additional empty bucket (5) with
a higher loss absorbency requirement of 3.5% of risk-weighted assets to provide an incentive against
banks further increasing their systemic importance. Any bank with a score lower than the cutoff level
of the first bucket is classified as non-systemically important and has no additional capital charge.

7Thereby we acknowledge that it is near impossible to estimate with such precision to be able to
determine an absolute ranking of riskiness. While we may observe large differences in the very top
of the ranking, the level of risk in the middle of the field may be very small with indistinguishable
differences.
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We now describe the testing procedure. Consider the set of all financial units N 0.
We start with the identification of the set of most risky units, defined at time t as

N (1)
t ≡ {i ∈ N 0 : E (xij,t | Ft−1) ≥ 0 for all j ∈ N 0}. (5)

The goal is to find the set N (1)
t . This is achieved through a sequence of significance

tests where objects in N 0 are removed from the set under consideration if they are
found to be less risky. The null we want to test is therefore

H0,N : E (xij,t | Ft−1) = 0 for all i, j ∈ N , (6)

with N ⊆ N 0, the subset containing the not yet eliminated firms. The null hypothesis
states that all financial units in the final set after the elimination procedure should
be equally risky. For any set N this can be tested using an equivalence test and an
elimination rule. If the equivalence test is rejected, we use the elimination rule to
remove the most significantly different unit, reducing the size of N , and re-apply the
equivalence test. Our set of most risky units is the subset of N 0 that contains N (1)

t

with a certain probability which can be controlled. This procedure identifies the most
risky set only. To obtain the full ranking, we apply the procedure on the set N 0 \ N̂ (1)

t

to obtain a second bucket, N̂ (2)
t . This is repeated until all units have been allocated to

a bucket.
In order to carry out the procedure we need an equivalence test and an elimination

rule. In case of equivalence we have that E (xij,t | Ft−1) = 0 for all i, j ∈ N . We
propose the following test statistic

Tmax(α) ≡ max
i,j∈N

|x̂ij,t|
c∗ij,t(α)

. (7)

Here the need for standardization becomes evident, as we want to identify the firm
which is most likely to be different from the rest. If there is a significant difference, an
elimination rule follows naturally. We eliminate the unit arg maxj∈N supi∈N x̂ij,t/c

∗
ij,t(α),

or to put it simply, the most significantly rejected financial unit. By taking the absolute
value of x̂ij,t we do not have to concern ourselves with the comparison of positive or
negative critical values. Our method is equivalent to having the non-absolute version
of the test statistic, and selecting the maximum absolute T (α) in the elimination rule.

Given a rejection point of 1, and independence of the different statistics, this test
will have size 1− (1− α)N(N−1)/2. Independence is however unlikely, which is another
reason to use the bootstrap approach. To control the size at α, we estimate the critical
value of Tmax, denoted d∗t (α), in the same bootstrap procedure. This way we obtain

our estimated buckets, which we denote N (k)
1−α, k = 1, 2, ..., where each bucket contains

the true set of most risky firms in N with probability 1− α.
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3.3. Procedure Implications

Of course, there are many different ways to obtain buckets of equally risky financial
units, and even rank them. However, the implications of our procedure are ideally
suited to ranking systemic firms.

First, the approach is one directional, which means we only control the size, the
Type I error of the null of equal risk, in one direction as well. By using a top-down
approach, we are controlling the probability of falsely removing a firm from the set of
firms under consideration. A false rejection leads to a firm being assigned to a less
risky cluster in the next iteration. Under-estimating the risk is in our opinion much
more hazardous than the reverse, and therefore this is controlled. Moreover, if a false
rejection occurs, the procedure has a self-correcting mechanism that minimizes the
effect on the relative ranking of the remaining firms. The firm that is falsely rejected,
is by definition the most risky firm in the set of firms not yet assigned to a bucket. As
such, with enough power, it will be assigned to a bucket on its own. Even though it is
estimated as less risky than it ought to be, it is still deemed more risky than all the
remaining, less risky firms.

Second there is the Type II error; failing to eliminate a firm, and assigning it to
a too risky bucket. In practice, what might happen is that a firm with a low point
estimate but a high standard error may be assigned to a riskier bucket then a firm with
a higher point estimate, but a low standard error. In some sense, these firms are loose
cannons. Their series have characteristics that make it difficult to estimate their true
risk with accuracy. Again, due to the top-down approach, the resulting ranking will
be prudent; in case of large uncertainty, a firm is always put in the most risky bucket.

Finally, we want to emphasize the number of buckets is not specified ex-ante. This
is the main difference with the approach proposed by the BCBS. It can be anywhere
between one and the number of firms under consideration, depending on the precision
of the estimates. It therefore automatically strikes a balance between compression and
accuracy of the ranking.

4. Bootstrap Implementation

This section describes how to obtain c∗ij,t and d∗t for all i, j and a general time
of interest T , for the broad class of RMs. Here, we assume a general DGP, rt =
g(θ, εt|Ft−1), with rt, εt vectors of dimension N , and θ the set of model parameters.
Here we assume εt to be iid with means zero and covariance matrix equal to the identity
matrix. For instance, for the returns in Example 1, rt = g(θ, εt|Ft−1) = σt|t−1εt, where
σt|t−1 follows a GARCH with parameters θ. We define the inverse, εt = g−1(θ, rt|Ft−1),
which retrieves the residuals from the observed process. Hence, for the same example,
εt = g−1(θ, rt|Ft−1) = rt/σt|t−1.

We employ the general concept of the methodology suggested for GARCH forecasts
by Pascual et al. (2006). In general, their approach is as follows. First estimate θi on
the original series r, i.e. rt for t = 1, ..., T − 1. Generate bootstrap series, r∗, using
θ̂i, and innovations drawn with replacement from the empirical distribution of the
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centred residuals. Estimate the same model on the bootstrap series, to obtain θ̂∗i .
The bootstrap RM forecast, f ∗i,t is computed based on the true series r and bootstrap

parameter estimates θ̂∗.
The original series are used for forecasting such that the state of the variable at the

time of the forecast is taken into account for the forecast. The bootstrapping is therefore
only used to measure the parameter uncertainty. Forecasts over longer horizons can be
achieved by simulating a return path based on draws from the empirical distribution.
For our setting this amounts to the following algorithm

Bootstrap Algorithm.

1. Estimate the models to obtain θ̂. Use the parameter estimates to forecast x̂ij,t.

2. Compute the residuals ε̂t = g−1(θ̂, rt|Ft−1) for all t = 1, ..., T − 1.

3. Draw τ1, ..., τT−1 i.i.d. from the uniform(1, T − 1) distribution and construct the
bootstrap errors from the centred residuals ε∗bt = ε̂τt , ∀ t = 1, ..., T − 1.

4. Construct the bootstrap return series. That is, r∗bt = g(θ̂, ε∗bt |Ft−1).

5. Estimate the model on the bootstrapped series to obtain θ̂∗b. Compute RM∗b
i,T

using fi(θ̂
∗b
i ;Xi), and similarly for RM∗b

j,T to obtain x∗bij,T .

6. Repeat steps 3 to 5 B times, obtaining bootstrap statistics x∗bij,T , b = 1, ..., B.
Calculate the bootstrap critical value c∗ij,T (α) as the α−quantile of the ordered
null-value shifted series |x∗bij,T − x̂ij,T |. Similarly, obtain d∗T as the α−quantile of
Tmax,∗b − Tmax.

The time-concordant sampling we propose in Step 3 ensures that the possible tail-
dependence between firms is preserved. We want to emphasize that the conditioning
variables Xi are not bootstrapped for the bootstrap forecasts. This is how we take in
the recent state of the series at the relevant time point.
To illustrate how to obtain the critical values in Step 6 consider the following table.

b/(i,j) (1,2) (1,3) . . . (N-1,N)
1 x∗112 x∗113 . . . x∗1N−1,N max(i,j)T

∗1 = |x∗1ij |/c∗ij
2 x∗212 x∗213 . . . x∗2N−1,N max(ij)T

∗2 = |x∗2ij |/c∗ij
...

...
...

. . .
...

...
B x∗B12 x∗B13 . . . x∗BN−1,N max(i,j)T

∗B = |x∗Bij |/c∗ij
c∗12 c∗13 . . . c∗N−1,N d∗

Given all the x∗ij the first step consists of obtaining the critical values c∗ij, which are
used to compute Tmax,∗ for every bootstrap sample. This delivers the distribution of
Tmax and d∗ is its centred α-quantile.

5. Simulation Study

We use Monte Carlo Simulations to study the properties of both the single test
and the Bucketing procedure. The Monte Carlo Simulation is performed on 1,000
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replications. For the bootstraps we generate B = 999 samples. We always forecast
the conditional risk measure at time T and estimate on the sample 1 to T − 1. We
apply the single test to a tail-risk measure, the V aR, and both the single test and the
bucketing procedure to the systemic risk measure MES, as defined in Examples 1 and
3 respectively.8

5.1. VaR

We apply the single test to the VaR estimated at the 5% level. For the simulation
we consider the following DGP

ri,t = σi,tεi,t

εi,t
iid∼ ST (0, 1, νi)

i = 1, 2,

(8)

where σ2
i,t follows a GARCH(1,1) with parameters (γ, α1, β1) = (0.05, 0.10, 0.85) for

both series. The innovations follow a student distribution with mean zero, variance
one and degrees of freedom νi. We need to be able to simulate under the null, where
V aR1,T = V aR2,T ⇐⇒ t−1

ν1

√
(ν1 − 2)/ν1σ1,T = t−1

ν2

√
(ν2 − 2)/ν2σ2,T . To impose this

equality, we simulate processes, and re-scale the series ex-post such that the VaRs are
equal. See Appendix A for more details on the re-scaling. We consider two cases, i.e.
both firms have equal or different degrees of freedom. In the former case the volatility
at time t is equal for both firms, in the latter case the volatility will be higher for the
firm with higher degrees of freedom.

For the equal degrees of freedom case, we set ν1 = ν2 = 5. We set σ1,T = 2 and
define σ2,T relative to that. Define ∆σ = σ2,T − σ1,T . We use ∆σ = {0.0, 0.5, 1.0}
to simulate under the null hypothesis and local alternatives. In the case of different
degrees of freedom we set ν1 = 5, ν2 = 7. Again σ1,T = 2. We scale σ2,T such that the
V aR2,T has the same value as in the previous case (with equal degrees of freedom), i.e.

σ2,T =
t−1
5

t−1
7

√
21/25(σ1,T + ∆σ). Consequently, the VaRs are equal when ∆σ = 0, while

the first series has a higher volatility and the second has a higher degree of freedom.
The results are reported in Table 1. We set the nominal size of the test to 5% and

consider two different sample sizes, T = 1, 000 and T = 2, 000. Results suggest that
the test does not suffer from serious size distortions. Indeed, the rejection frequencies
reported in column ∆ = 0 are very close to the nominal size of 5% in all cases, even
for 1,000 observations. As expected, power increases with the distance between the
VaRs and reaches almost one for both DGPs when ∆ = 1. It seems to be slightly
higher in the case where there is a difference in degrees of freedom of the innovation
distributions.

8For the estimation of the conditional volatility models we use the G@RCH-package for OxMetrics
(Laurent, 2013).
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Table 1: Rejection frequencies of the single test of equal VaR

T=1,000 T=2,000

ν2\∆σ 0.0 0.5 1.0 0.0 0.5 1.0

5 0.045 0.669 0.966 0.049 0.838 0.994

7 0.052 0.721 0.976 0.050 0.864 0.998

Note: The table contains the rejection rates of a single
test of equal VaR. Nominal size is 5%.

5.2. MES

For the MES we consider the general DGP as proposed by Brownlees and Engle
(2011), i.e.

rm,t = σm,tεm,t

ri,t = σi,t

(
ρi,tεm,t +

√
1− ρ2

i,tξi,t

)
(εm,t, ξi,t) ∼ F,

(9)

where σm,t and σi,t follow GARCH models, while ρi,t follow a cDCC as described in
Example (3). F is a general zero mean, unit variance distribution, with unspecified
dependence structures. Under the assumption that the innovations are i.i.d. and all
dependence between firms and the market is captured by the correlation, Benoit et al.
(2012) show that the MES can be written as:

MESi,t(α) = βi,tESm,t(α), (10)

where βi,t = cov(ri,t, rm,t)/var(rm,t) = ρi,tσi,t/σm,t, and ESm,t is as in Example 2.
The Expected Shortfall has a closed form expression for several innovation distri-

butions, such as the Normal and Student tν . For instance, in the Gaussian case, letting
φ(.) and Φ(.) denote the standard normal univariate pdf and cdf respectively, the MES
can be written as follows:

MESi,t(α) = βi,tσm,tλ(Φ−1(α))

= ρi,tσi,tλ(Φ−1(α)),
(11)

where λ(z) = φ(z)/Φ(z) denotes the Mills ratio. Given a distribution, the MES there-
fore solely depends on the volatility of the firm and its correlation with the market.
Under the assumption of normality, two firms have equal MES if the product of con-
ditional volatilities and conditional correlation with the market at time t is equal. We
use this result to control the relative risk of simulated firms.

To keep our simulations computationally feasible, we make a simplifying assumption
13



of constant correlations. The model reduces to a CCC (Bollerslev, 1990). As there
are no time-varying correlations we save time in our simulations by estimating the
correlation by its sample counterpart.9 Compared to Equation (9), we set ρi,t = ρi. Of
course, this assumption will be relaxed in the application.

Next to the constant correlation, another difference with (9) is that innovations
are assumed i.i.d. standard normal. That is, again comparing to Equation (9), F =
N(0, I2), the bivariate normal distribution. GARCH models are estimated by maximum
likelihood and the tail expectation using the non-parametric estimator of Scaillet (2005)
as in Brownlees and Engle (2011).

GARCH parameters (γ, α1, β1)′ are set to (0.05, 0.10, 0, 85)′ for both models and to
simulate under the null and the alternative we employ the same trick used in Section
5.1 to rescale the volatilities for time T .

For the single test we generate two firms and the market. The market has σm,T = 1.
The first firm has σ1,T = 2 and ρ1 = 0.5. We vary the volatility and correlation of the
second firm. Let us define ∆σ = σ2,T−σ1,T and ∆ρ = ρ2−ρ1. The distance between the
MES of firms 1 and 2 is therefore a function of the parameters (∆σ,∆ρ). For instance,
setting (∆σ,∆ρ) = (0.5, 0.05) results in MES1,T = 2.063 and MES2,T = 2.673. We
choose ∆σ = {0, 0.5, 1} and ∆ρ = {0.00, 0.05, 0.10}.

For the bucketing procedure we generate the market and N firms. In order to
obtain firms that satisfy the null hypothesis of equal systemic risk, we give all firms
within the same bucket identical variance and correlation. The number of simulated
buckets is set to c = 5. The market again has σm,T = 1. All firms i in bucket 1 have

σ
(1)
i,T = 2, ρ

(1)
i = 0.5. All firms i in bucket k = 2, ..., c have σ

(k)
i,T = 2 + (k − 1)∆σ, ρ

(k)
i =

0.5 + (k − 1)∆ρ. The difference between two successive buckets in terms of their
volatility and correlation is therefore equal to that between the two firms in the single
test of equal MES. We also take the same values for {∆σ,∆ρ}. We simulate N = 20
with c = 5 buckets of 4 firms each. This means that the difference between the most
and least risky cluster is 4∆σ and 4∆ρ.

5.2.1. Single test

Table 2 reports the rejection frequencies of the null hypothesis of equal MES for
T = 1, 000 and 2, 000 at the 5% significance level. The size of the test corresponds
to ∆σ = ∆ρ = 0, and is close to the nominal value. There appear to be no size
distortions. The other entries in the table correspond to power. Like in the test of
equal VaR presented in Section 5.1, power increases rapidly with the distance between
the MES and reaches values close to 100% when ∆ = 1 For T = 1, 000, the power is
close to 70% when the difference in correlation is only 0.05 and volatility is 0.5 higher.
When T = 2, 000 the power is over 90% for the same parameters.

9We have performed the simulations using cDCC correlations for a few parameter settings with a
small number of replications and found very similar results.
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Table 2: Rejection frequencies of the single test of equal MES

T=1,000 T=2,000

∆ρ\∆σ 0.0 0.5 1.0 0.0 0.5 1.0

0.00 0.046 0.346 0.835 0.044 0.605 0.967

0.05 0.078 0.687 0.944 0.117 0.915 0.998

0.10 0.285 0.895 0.984 0.530 0.988 1.000

Note: The table contains the rejection rates of a single test
of equal MES. Nominal size is 5%.

5.2.2. Bucketing Procedure

In order to save space, we only report the results for T = 2, 000 and choose a
significance level of α = 10%. This means that we expect each bucket to contain the
most risky firms in the remaining set with 90% probability.

It is difficult to evaluate the bucketing procedure in terms of size and power. This is
mainly due to the fact that an error in any of the iterations has an impact on the next
steps. Indeed, the composition of the second bucket will be affected by the composition
of the first one, and so on. Moreover, we may overestimate the number of buckets if,
for instance, the first bucket is split up into two separate buckets, such that the third
estimated bucket is in fact the second bucket implied by the DGP. Therefore, we do
not expect to always have a one-to-one correspondence between the generated ranking
and the estimated ranking.

Despite these problems, we can comment on two types of relevant statistics. We
can compute typical size and power statistics of the first estimated bucket, as they are
not affected by previous iterations. Second, we can talk about relative ranking. If one
firm is more risky than another according to the DGP, it has to be allocated to a higher
bucket.

When only looking at the first bucket, size and power are meaningful. The test is
defined in such a way that the estimated first bucket contains the true first bucket with
probability 1−α. Hence, the size for the first iteration can be defined as the fraction of
firms in the true first bucket that are included in the estimated first bucket. Formally,
we define the size as the frequency at which N (1) ⊂ N̂ (1)

90%.
Power cannot be explicitly defined for the procedure. The power should relate to

the extent to which we are able to eliminate firms that are less risky. Only four firms
belong to the first bucket. That means the remaining sixteen have to be eliminated.
The power is one when the sixteen least risky firms are eliminated. We therefore report
the fraction of these firms not assigned to the first cluster.

Results are reported in Panel A of Table 3. The frequency at which the most
risky firms are contained in the first bucket is very close to (1 − α), even in the case
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when ∆σ = ∆ρ = 0, and all 20 firms are in the first bucket. For the second statistic,
the power increases when the distance between buckets becomes greater. Overall, the
procedure has quite high power, rapidly increasing to one with reasonable distance to
the null.

Panel B of Table 3 concerns relative rankings. Again, we consider two different
statistics. For the first one, labelled ‘Pairwise relative ranking correct’, we check
whether the relative ranking is correct. If firm i is more risky than firm j, it has
to be allocated to an earlier bucket. If they are equally risky they need to be in the
same bucket. This measure is in our opinion appropriately severe to the aforementioned
problem with one bucket being estimated as two separate buckets. The measure will
deteriorate as these two buckets should be one bucket, but both buckets are still ranked
higher than the next bucket, keeping the relative ranking intact.

The second statistic we consider, labelled ‘Top 10 correctly identified’, has great
practical relevance. The only firms we really care about are the most risky. We
therefore compute the frequency at which the top ten of estimated firms only contains
ten of the most risky firms. Note that the number ten has no real significance in our
simulation. The top ten should therefore contain only firms out of the top twelve of
our DGP.

Table 3 suggests that both statistics go to one; when the firms are sufficiently far
from each other relative ranking is close to perfect. The fact that the numbers for
the pairwise relative ranking are higher than those for the size, may be surprising at
first sight. This is in fact due to the self-correcting mechanism within the procedure.
Due to Type I errors, wrongful rejection occurs by definition. The next bucket should
contain only the wrongly rejected firm(s) as these are the most risky remaining firms.

The rest of the ranking is unaffected, a single bucket is simply split into two. This is
also what happens in practise. To illustrate this, Figure 1 plots the allocation of firms
to buckets 1, 2 and 3 for those simulations where the first estimated bucket contained
two or less firms, instead of the required four. The firms within the lines, firms 1 to 4,
and 5 to 8, are equally risky and should therefore be in a single bucket. The second
bucket almost always takes the remaining firms and the third becomes what was the
second under the DGP.

6. Empirical Application

In this empirical application we apply the bucketing procedure to 94 of the largest
U.S. financial firms. The dataset we use is identical to the panel studied by Acharya
et al. (2010), Brownlees and Engle (2011) and many other papers on similar topics. It
contains daily returns and market capitalizations retrieved from CRSP and quarterly
book value of equity from Compustat. The data covers the period between January 3,
2000 and December 31, 2012, for a total of 3,269 daily observations. The market return
is approximated by the CRSP market value-weighted index return. Market value is
determined by CRSP daily closing prices and number of shares outstanding. Quarterly
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Table 3: Simulation results on the Bucketing procedure for MES

∆ρ\∆σ 0.0 0.5 1.0

Panel A: First bucket

N (1) ⊂ N̂ (1)
90% (size)

0.00 0.882 0.918 0.910

0.05 0.911 0.907 0.905

0.10 0.912 0.910 0.909

Firms i /∈ N (1) not in N̂ (1)
90% (power)

0.00 - 0.764 0.988

0.05 0.822 0.987 1.000

0.10 0.914 1.000 1.000

Panel B: All buckets

Pairwise relative ranking correct

0.00 - 0.654 0.917

0.05 0.836 0.939 0.949

0.10 0.899 0.958 0.967

Top 10 correctly identified

0.00 - 0.995 0.999

0.05 1.000 1.000 1.000

0.10 1.000 1.000 1.000

Note: The table is divided into two parts. Panel A reports results on
the first bucket only, showing the frequency at which the true first
bucket is in the estimated bucket and the fraction of firms correctly
eliminated. Panel B concerns all buckets and shows the fraction of
pairwise rankings correct, and the fraction of simulations where the
Top 10 was correctly identified.

17



Figure 1: Bucket allocation when the first estimated bucket is too small.
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Note: The graph shows the cluster allocation of the different firms when the size
of the first bucket two firms or less. Parameters are ∆σ = 0.5,∆ρ = 0.05.

book values of total liabilities are from Compustat (LTQ). This results in a dataset
which contains all U.S. financial firms with a market capitalization greater than 5bln
USD as of the end of June 2007. A full list of ticker symbols and firms is given in
Appendix C.

The objective of this application is twofold. First, we want to test whether the
risk measures are estimated with enough precision to deliver a complete ranking of
firms. If no absolute ranking can be distinguished, we want to test whether we can
at least identify buckets of firms that are indistinguishable from each other within the
bucket but distinguishable from firms belonging to lower ranked buckets. Different
measures can be estimated with varying degrees of uncertainty, and may also differ in
the ordering of point estimates. As such, different risk measures can lead to different
rankings.

Second, given a suitable risk measure, our bucketing procedure can be used to
obtain rankings very similar to the ranking of G-SIBs (Financial Stability Board, 2011,
2012), but on a daily basis.

We consider three measures, the MES, the %SRISK and the ∆CoVaR. The %SRISK
is the percentage version of the SRISK, defined in Example 4, and is defined as

%SRISKi,t = SRISKi,t/
N∑
j=1

SRISKj,t.

The ∆CoVaR (Adrian and Brunnermeier, 2011) has yet to be defined. It is a measure
based on the CoVaR, i.e. the Value-at-Risk of market returns, conditional on some
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event C(ri,t) observed for firm i:

Pr
(
rm,t ≤ CoV aR

m|C(ri,t)
i,t | C(ri,t)

)
= α. (12)

The ∆CoVaR is defined as the difference between the VaR of the financial system
conditional on the distress of a particular financial institution i and the VaR of the
system conditional on the median state of that same firm i. Although the framework
it was developed in is completely different from the one we consider, the ∆CoVaR can
also be represented in our assumed DGP of Equation (9) (Benoit et al., 2012). Adrian
and Brunnermeier (2011) suggest using ri,t = V aRi(α) as the distress event C(ri,t).
We obtain a time-varying measure by considering ri,t = V aRi,t(α). We then obtain

∆CoV aRi,t(α) = CoV aR
m|ri,t=V aRi,t(α)
i,t − CoV aRm|ri,t=Median(ri,t)

i,t . (13)

The authors propose to estimate the ∆CoVaR using quantile regressions.10

rm,t = µiα + γiαri,t. (14)

The estimated CoVaR for the ith firm is then given by CoV aRm|V aRi,t(α) = µ̂iα +
γ̂iαV aRi,t(α), where µ̂iα and γ̂iα are the estimated parameters of the quantile regression.
Our definition differs from Adrian and Brunnermeier (2011) in that C(ri,t) is a function
of the conditional and not the unconditional VaR. This leads to

∆CoV aR
m|V aRi,t(α)
i,t = γ̂iα

(
V̂ aRi,t(α)− V̂ aRi,t(0.5)

)
. (15)

6.1. Bucketing different measures

We report the bucket allocation for the MES, %SRISK and ∆CoVaR on eight
pre-determined dates coinciding with those in Brownlees and Engle (2011). A firm is
included in the ranking at a certain date if the firm still exists and furthermore there
are at least 1,000 observations up until the date. We set α = 0.2. This implies that
every bucket contains the true set of most risky remaining firm with 80% probability.
In practice a higher value will increase average bucket size and decrease the total
number of buckets, and vice versa. Hansen et al. (2011) and Boudt et al. (2013) choose
α = 0.25.

In our tables, the firms are first ranked in terms of their bucket, and within buckets
we order the firms in descending value of their RM estimate, even though there is no
statistical evidence that their risk is statistically different. We then report the ten
highest ranked firms, as is done in amongst others Brownlees and Engle (2011), Benoit
et al. (2012) and ?. This is an arbitrary cut-off point, and as such we also provide the
size of the top 10. For instance, the first nine firms might be allocated to three buckets
while the fourth one might contain more than one firm, in which case the top 10 is a

10Quantile regressions are estimated using RQ 1.0 for OxMetrics by Daniel Morillo and Roger
Koenker.
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Table 4: MES Rankings

30-03-2007 29-06-2007 31-12-2007 29-02-2008

#Buckets/Firms: 5/83 #Buckets/Firms: 5/83 #Buckets/Firms: 5/81 #Buckets/Firms: 6/82

Size Top 10: 29 Size Top 10: 53 Size Top 10: 29 Size Top 10: 36

LEH 1 3.54 AMTD 1 3.01 ETFC 1 9.41 ABK 1 8.27

BSC 1 3.47 BSC 1 2.80 MBI 1 9.29 MBI 1 7.64

MS 1 3.45 MER 1 2.63 ABK 1 7.53 LEH 1 5.28

AMTD 1 3.43 MBI 1 2.62 FRE 1 6.96 CIT 1 5.28

ETFC 1 3.26 SCHW 1 2.60 CFC 1 6.04 WM 1 5.15

AGE 1 3.22 GS 1 2.54 WM 1 5.82 MER 1 5.11

JNS 1 3.16 LEH 1 2.43 CIT 1 5.38 FRE 1 4.82

GS 1 3.16 ETFC 1 2.35 FNM 1 5.28 CNA 1 4.78

BEN 1 3.15 TROW 1 2.24 MS 1 5.15 MI 1 4.61

MER 1 2.82 MS 1 2.20 LEH 1 4.90 BSC 1 4.61

30-06-2008 29-08-2008 30-01-2009 30-06-2010

#Buckets/Firms: 6/82 #Buckets/Firms: 8/81 #Buckets/Firms: 6/73 #Buckets/Firms: 5/75

Size Top 10: 49 Size Top 10: 18 Size Top 10: 26 Size Top 10: 39

LEH 1 10.29 FRE 1 13.59 STT 1 22.19 ABK 1 7.62

MBI 1 9.78 FNM 1 13.40 C 1 20.88 CBG 1 6.97

CIT 1 8.11 ABK 1 12.94 HBAN 1 20.78 MI 1 6.79

PFG 1 6.56 LEH 1 12.42 FITB 1 19.82 JNS 1 6.75

ABK 2 7.81 MBI 1 9.64 PNC 1 19.82 ETFC 1 6.68

FITB 2 7.73 AIG 2 8.66 AFL 1 19.50 ACAS 1 6.62

WM 2 7.46 MER 2 8.63 LNC 1 19.03 LNC 1 6.57

MER 2 6.25 RF 2 7.68 BAC 1 18.49 PFG 1 6.32

C 2 5.82 BAC 2 7.23 HIG 1 17.41 MBI 1 6.23

FRE 2 5.71 WM 2 6.97 PFG 1 17.10 AMP 1 6.19

meaningless concept. Additionally, we report the total number of firms included in the
ranking for that day as well as the total number of buckets they are allocated to.
The MES is estimated using C = V aRm,t(0.05) as the conditioning event. We first
check for possible dynamics in the mean by for each series individually minimizing
the Schwarz Information Criteria of the ARMA(m,n)-GJR-GARCH(1,1) model over
m,n = 0, ..., 3. We tested for the presence of serial correlation in the residuals and
their squares and failed to reject the null for all series. As such the i.i.d. bootstrap
described in Section 4 will suffice. Table 4 reports the bucket allocation for the MES.

Results suggest that there is too much estimation uncertainty to be able to truly
distinguish firms using the daily MES forecasts. We obtain anywhere between only
five and eight buckets. On six out of eight days we cannot distinguish any differences
between the ten highest estimates. However, two buckets are identified within the
top ten in June and September 2008. Regardless, we conclude that the MES is not
estimated with sufficient precision to dissociate firms with respect to this systemic risk
measure. Indeed, for most dates, the first thirty firms belong to the same bucket.
Consequently, ranking firms on the basis of point forecasts of MES seems hazardous.
Table 5 shows the top ten of the bucket allocation for %SRISK. For the %SRISK we
have to choose a value for the capital ratio k. Following Brownlees and Engle (2011) we
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Table 5: %SRISK Rankings

30-03-2007 29-06-2007 31-12-2007 29-02-2008

#Buckets/Firms: 7/14 #Buckets/Firms: 7/13 #Buckets/Firms: 19/36 #Buckets/Firms: 17/37

Size Top 10: 11 Size Top 10: 10 Size Top 10: 11 Size Top 10: 13

MS 1 21.16 MS 1 17.92 C 1 16.59 C 1 15.13

FRE 2 14.61 FRE 1 16.35 MER 2 10.15 MER 2 8.86

FNM 2 13.37 MER 2 15.52 MS 3 9.16 MS 3 8.30

LEH 3 10.51 BSC 3 11.14 FRE 4 8.41 FRE 3 7.80

GS 3 10.38 LEH 3 10.90 FNM 5 7.65 FNM 3 7.74

MER 3 10.26 FNM 3 9.42 GS 5 7.60 JPM 3 7.43

BSC 4 9.10 GS 3 9.21 LEH 6 6.11 GS 4 7.36

MET 5 3.43 MET 4 3.34 JPM 6 6.01 LEH 5 6.09

HIG 5 1.87 PRU 4 2.63 BAC 6 3.42 BAC 5 4.49

PRU 5 1.78 HIG 4 2.12 BSC 7 3.96 BSC 6 3.77

30-06-2008 29-08-2008 30-01-2009 30-06-2010

#Buckets/Firms: 19/39 #Buckets/Firms: 16/36 #Buckets/Firms: 32/53 #Buckets/Firms: 18/37

Size Top 10: 10 Size Top 10: 10 Size Top 10: 10 Size Top 10: 10

C 1 15.17 C 1 13.43 JPM 1 15.28 C 1 16.38

BAC 2 9.06 JPM 2 9.75 C 2 14.22 BAC 1 16.12

JPM 3 8.06 BAC 2 9.56 BAC 3 12.92 JPM 2 13.85

MER 3 7.82 MER 3 7.41 WFC 4 9.27 AIG 3 8.56

MS 4 7.31 FRE 3 7.39 AIG 5 6.27 MS 4 7.06

FRE 5 6.53 AIG 3 7.04 GS 6 6.08 WFC 5 4.83

FNM 5 6.29 FNM 4 7.17 MS 7 4.59 MET 5 4.64

GS 6 5.66 MS 5 6.75 MET 7 3.61 GS 5 4.39

AIG 6 5.58 GS 6 6.05 PRU 8 3.37 PRU 5 4.23

LEH 7 5.22 LEH 7 5.14 HIG 9 2.19 HIG 6 3.05

set it to k = 0.08.11 The total number of firms now denotes those firms with non-zero
SRISK, although all firms are included in the bucketing.

The transformations from MES to SRISK induce extra variability and distance
between firms, without adding additional uncertainty. As such, they turn out to be
much easier to distinguish. The top ten now often consists of more buckets than the
full sample for the MES. Unlike MES, results suggest that %SRISK can be estimated
with a sufficient amount of precision to obtain a useful ranking.

Note also that our ranking produces some examples of the loose cannons. For
instance, in August 2008, FNM has a higher point estimate than AIG, but is allocated
to a lower bucket. This is due to FNM being estimated more precisely than AIG. The
greater uncertainty in the estimate of AIG leads to a higher upper confidence bound
than FNM’s. As such AIG was put in a high risk bucket.

Finally, Table 6 shows the bucket allocation for the ∆CoVaR using ri,t = V aRi,t(0.05)
as the conditioning event. The combination of our assumed DGP and the estimation
procedure leads to such large amounts of estimation uncertainty that we simply cannot

11Brownlees and Engle (2011) show limited sensitivity of the SRISK point estimate ordering to this
variable.
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Table 6: ∆CoVaR Rankings

30-03-2007 29-06-2007 31-12-2007 29-02-2008

#Buckets/Firms: 1/83 #Buckets/Firms: 2/83 #Buckets/Firms: 2/81 #Buckets/Firms: 1/82

Size Top 10: 83 Size Top 10: 75 Size Top 10: 74 Size Top 10: 82

LEH 1 1.09 MBI 1 0.94 MBI 1 3.17 AIG 1 1.77

AGE 1 1.05 GS 1 0.85 ABK 1 2.38 CNA 1 1.71

MS 1 0.98 C 1 0.81 ETFC 1 2.29 MI 1 1.67

BSC 1 0.95 LEH 1 0.80 SLM 1 2.12 MER 1 1.67

BEN 1 0.90 MER 1 0.79 NCC 1 1.74 C 1 1.57

MER 1 0.90 JPM 1 0.76 WM 1 1.73 RF 1 1.57

GS 1 0.89 BSC 1 0.75 C 1 1.69 LEH 1 1.56

LM 1 0.84 SCHW 1 0.73 FRE 1 1.62 JPM 1 1.50

C 1 0.83 EV 1 0.71 FITB 1 1.58 EV 1 1.47

BBT 1 0.82 HRB 1 0.69 BBT 1 1.55 HBAN 1 1.40

30-06-2008 29-08-2008 30-01-2009 30-06-2010

#Buckets/Firms: 2/82 #Buckets/Firms: 3/81 #Buckets/Firms: 2/73 #Buckets/Firms: 1/75

Size Top 10: 56 Size Top 10: 31 Size Top 10: 63 Size Top 10: 75

FITB 1 3.48 AIG 1 2.97 AFL 1 9.05 MTB 1 1.93

HBAN 1 2.87 LEH 1 2.49 PNC 1 8.27 BEN 1 1.88

LEH 1 2.68 MI 1 2.49 STT 1 6.89 TROW 1 1.79

KEY 1 2.37 FRE 1 2.43 FITB 1 6.41 EV 1 1.67

RF 1 2.33 MER 1 2.31 BAC 1 5.97 MI 1 1.66

C 1 2.28 RF 1 2.30 ACAS 1 5.54 AFL 1 1.61

STI 1 2.03 KEY 1 2.05 ALL 1 5.49 AXP 1 1.57

BBT 1 2.02 FNM 1 2.01 WFC 1 5.40 CINF 1 1.51

AIG 1 2.01 SNV 1 1.97 STI 1 5.26 GS 1 1.49

MI 1 1.95 C 1 1.94 C 1 5.14 SCHW 1 1.47

distinguish any firms in the top ten at all. Despite large variations in point estimates
of ∆CoVaR, only one bucket is identified for most dates, and the maximum number of
buckets is three. This is despite large variation in the point estimates. For instance,
the highest point forecast of ∆CoVaR is 9.05 for AFL, but its bootstrap standard de-
viation is close to 4. In an unreported simulation we find that even if the true DGP
is exactly the one assumed here, the standard deviation of the ∆CoVaR is still on
average over 40% of its value. This is fully due to the quantile regression estimates,
which have a very wide distribution. As a result, the procedure simply fails to make
enough rejections to make the ranking useful.

To conclude, results suggest that ranking firms with respect to MES and ∆CoVaR
is hazardous and that %SRISK is the only systemic risk measure (among the three
considered here) that delivers a meaningful ranking. Indeed, using our bucketing pro-
cedure on %SRISK, we are able to identify several buckets of firms and to obtain a
meaningful ranking of buckets containing equally risky firms in each bucket. As such
we use it to obtain a ranking on dates close to those when the G-SIB rankings were
published.

Table 7 contains the top 20 of firms according to %SRISK on the BIS Ranking dates,
beginning of November 2011 and 2012. The ranking is however difficult to compare
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Table 7: SRISK BIS-Dates

2011-11-01 2012-11-01

TICK Bucket %SRISK TICK Bucket %SRISK

BAC 1 17.05 BAC 1 19.48

JPM 1 15.44 C 1 17.00

C 1 14.35 JPM 1 14.26

MS 1 6.43 MET 2 9.00

GS 2 6.25 MS 3 7.81

MET 2 6.08 GS 3 7.58

WFC 2 5.76 PRU 3 7.22

PRU 2 4.63 HIG 4 3.63

HIG 2 3.02 LNC 5 2.52

AIG 3 2.43 SLM 6 1.85

BK 3 1.60 PFG 6 1.54

LNC 4 1.63 AIG 6 1.31

SLM 4 1.58 BK 6 1.02

STI 4 1.11 GNW 7 1.39

PFG 4 1.06 RF 8 0.85

PNC 4 0.85 AMP 8 0.72

STT 4 0.85 STI 8 0.65

COF 4 0.71 ETFC 8 0.58

BBT 4 0.70 STT 8 0.15

BLK 4 0.62 BBT 8 0.10

to the BIS ranking. They have an international sample, and we have non-banking
institutions. To facilitate comparison, Table 8 contains only the U.S. firms in the G-
SIB list and our ranking omitting the Insurance and Other companies (see Appendix
C). We show all firms in the BIS ranking and the first four buckets identified with
the bucketing procedure on %SRISK. The ranking is very similar. BAC is ranked one
bucket riskier, and BK one bucket less risky. We were not able to distinguish STT
from many firms which are not present in the G-SIB list. The one real outlier is WFC,
which is in the third BIS Bucket, but has zero estimated SRISK, and as such does not
appear in our ranking. Overall, our ranking is remarkably close to the BIS ranking.

7. Conclusion

This paper introduces a test of equality of single point forecasts for a general class
of risk measures, as well as an iterative procedure to produce a grouped ranking.
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Table 8: BIS ranking published November 2012 and our buckets on November 1 2012

Bucket BIS Allocation 2012-11-01

1 C, JPM C, JPM, BAC

2 BAC, BK, GS, MS GS, MS

3 WFC, STT BK

4 RF, STI, ETFC, STT, BBT

Note: The table reports the BIS ranking excluding non-US firms, and the first
four clusters of our buckets excluding ”Insurance” and ”Other” companies.

Simulation results on VaR and MES forecasts suggest that the test has good properties
in finite samples, both in terms of size and power.

We applied the bucketing procedure on real forecasts for three popular systemic
risk measures. For the MES and ∆CoVaR, we find that for most of the eight dates
considered in the application, the first thirty firms belong to the same bucket of riski-
est firms. Consequently, ranking firms on the basis of point forecasts of MES and
∆CoVaR seems hazardous. However, when applied on %SRISK, our bucketing proce-
dure is able to identify a meaningful ranking of buckets containing equally risky firms
in each bucket. Interestingly, this ranking is very close to the G-SIB ranking.
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Figure A.2: Simulated and scaled variance processes
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Appendix A. Rescaling GARCH processes

We rescale the GARCH process, such that the sum of the conditional variances
from T +1 to T +H exactly equals K. We start with a process whose sum of variances

is
∑H

i=1 σ
2
T+i. We divide the entire series by

√∑H
i=1 σ

2
T+i/K. For instance, for H = 2

we have

yT+1 = εT+1σT+1

yT+2 = εT+2σT+2

with sum of conditional variances σ2
T+1 + σ2

T+2. The transformed series

ỹT+1 = εT+1

√
KσT+1/

√
σ2
T+1 + σ2

T+2

ỹT+2 = εT+2

√
KσT+2/

√
σ2
T+1 + σ2

T+2

which has sum of variances K(σ2
T+1 + σ2

T+2)/(σ2
T+1 + σ2

T+2) = K.
As an example, Figure A.2 depicts the variance processes of four simulated series
belonging to two different buckets. The variance at time 1000 is equal for the series
belonging to the same bucket.

Appendix B. Estimation of the MES

Volatilities. The volatilities are estimated using the GJR-GARCH specification (see
Glosten et al. (1993); Rabemananjara and Zaköıan (1993)), where the conditional vari-
ance is updated as

σ2
i,t = γ + α1iε

2
i,t−1 + α2iε

2
i,t−1Iεi,t<0 + βiσ

2
i,t−1. (B.1)
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Correlation. The time-varying conditional correlation is modelled using the cDCC
model of Aielli (2013). In this specification, the conditional covariance matrix Σt

is decomposed as
Σt = DtRtDt, (B.2)

where Rt is the conditional correlation matrix and Dt a diagonal matrix of conditional
volatilities σi,t. The cDCC framework introduces a positive definite pseudo-correlation
matrix Qt, defined and updated as

Rt = diag(Qt)
−1/2Qtdiag(Qt)

−1/2 (B.3)

Qt = (1− αC − βC)S + αCε
∗
t−1ε

∗′
t−1 + βCQt−1, (B.4)

where ε∗t = diag(Qt)
1/2εt and S is the sample covariance matrix of ε∗t .

Tail expectations. Brownlees and Engle (2011) use a non-parametric kernel estimator
of Scaillet (2005) to obtain the tail expectations.

Ê(εmt | εmt < κ) =

∑T
t=1 εmtΦ

(
κ−εmt

h

)∑T
t=1 Φ

(
κ−εmt

h

) , (B.5)

and

Ê(ξit | εmt < κ) =

∑T
t=1 ξitΦ

(
κ−εmt

h

)∑T
i=1 Φ

(
κ−εmt

h

) , (B.6)

where κ = C/σmt, and Φ(u) is the standard normal cdf. Following Scaillet (2005), we
set the bandwidth h = T−1/5.
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Appendix C. Company Tickers

Depositories(29) Insurance (32)

BAC Bank of America ABK Ambac Financial Group
BBT BB&T AET Aetna
BK Bank of New York Mellon AFL Aflac
C Citigroup AIG American International Group
CBH Commerce Bancorp AIZ Assurant
CMA Comerica inc ALL Allstate Corp
HBAN Huntington Bancshares AOC Aon Corp
HCBK Hudson City Bancorp WRB W.R. Berkley Corp
JPM JP Morgan Chase BRK Berkshire Hathaway
KEY Keycorp CB Chubb Corp
MI Marshall & Ilsley CFC Countrywide Financial
MTB M&T Bank Corp CI CIGNA Corp
NCC National City Corp CINF Cincinnati Financial Corp
NTRS Northern Trust CNA CNA Financial corp
NYB New York Community Bancorp CVH Coventry Health Care
PBCT Peoples United Financial FNF Fidelity National Financial
PNC PNC Financial Services GNW Genworth Financial
RF Regions Financial HIG Hartford Financial Group
SNV Synovus Financial HNT Health Net
SOV Sovereign Bancorp HUM Humana
STI Suntrust Banks LNC Lincoln National
STT State Street MBI MBIA
UB Unionbancal Corp MET Metlife
USB US Bancorp MMC Marsh & McLennan
WB Wachovia PFG Principal Financial Group
WFC Wells Fargo & Co PGR Progressive
WM Washington Mutual PRU Prudential Financial
WU Western Union SAF Safeco
ZION Zion TMK Torchmark

TRV Travelers
UNH Unitedhealth Group
UNM Unum Group

Broker-Dealers (10) Others (23)

AGE A.G. Edwards ACAS American Capital
BSC Bear Stearns AMP Ameriprise Financial
ETFC E-Trade Financial AMTD TD Ameritrade
GS Goldman Sachs AXP American Express
LEH Lehman Brothers BEN Franklin Resources
MER Merill Lynch BLK Blackrock
MS Morgan Stanle BOT CBOT Holdings
NMX Nymex Holdings CBG C.B. Richard Ellis Group
SCHW Schwab Charles CBSS Compass Bancshares
TROW T.Rowe Price CIT CIT Group

CME CME Group
COF Capital One Financial
EV Eaton Vance
FITB Fifth Third bancorp
FNM Fannie Mae
FRE Freddie Mac
HRB H&R Block
ICE Intercontinental Exchange
JNS Janus Capital
LM Legg Mason
NYX NYSE Euronext
SEIC SEI Investments Company
SLM SLM Corp
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