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Sciences and Engineering Research Council of Canada and the Social Sciences and Humanities Research Council of
Canada for research support. Email: rgencay@sfu.ca (R. Gençay), dsignori@sfu.ca (D. Signori).



Multi-scale tests for serial correlation

Abstract. This paper introduces a new family of portmanteau tests for serial correlation. Using
the wavelet transform, we decompose the variance of the underlying process into the variance of its
low frequency and of its high frequency components and we design a variance ratio test of no serial
correlation in the presence of dependence. Such decomposition can be carried out iteratively, each
wavelet filter leading to a rich family of tests whose joint limiting null distribution is a multivariate
normal. We illustrate the size and power properties of the proposed tests through Monte Carlo
simulations.

I. Introduction

This paper proposes a new family of frequency-domain tests for the white noise hypothesis, the

assumption that a process is uncorrelated. Frequency-domain tests take as their starting point the

result that, under stationarity conditions, the linear dependence structure of a process {yt} is fully

captured by its spectral density function Sy(f). We focus our attention on the relation between

the spectral density function and the variance,

var(y) = 2

∫ 1/2

0
Sy(f) df ,

which, paraphrasing, says that the contribution of the frequencies in a small interval ∆f containing

f is approximately Sy(f)∆f . It is an elementary result that—when defined—the spectral density

function of an uncorrelated process is constant or, in other words, that each frequency contributes

equally to the variance of a white noise process; instead, when a process is serially correlated,

each frequency generally contributes in different amounts and the spectral density function is non-

constant.

Such contrast is the basis for the tests developed in this paper. Imagine that {yt} is a gaussian

white noise process (Fig. 1, left panel). Then high frequencies, say those in the band [1/4, 1/2], will

contribute exactly half of the total variance of {yt}. On the other hand, if {yt} is an autoregressive

process of order 1 with a positive coefficient (right panel), high frequencies will account for less than

half of the total variance. This example motivates the introduction of the variance ratio E(a, b),

defined as the ratio of the total variance contributed by the frequency band (a, b). Under the null

of no serial correlation, E(a, b) is equal to the length of the interval (a, b) and any departure from

this benchmark provides the means to detect serial correlation.

Although the variance ratio can be defined for an arbitrary frequency domain, the need to

estimate the corresponding integral of the spectral density function—the numerator of E—imposes

practical limitations. We resort to wavelet analysis to address this need. For frequency bands of a

particular form, the numerator of the statistic E is a well known quantity, the wavelet variance,1

which can be estimated efficiently using the maximum-overlap discrete wavelet transformation

estimator. In this light, given the temporal resolution properties of the wavelet transform, it is

1The wavelet variance was studied, among others, by Allan (1966), Percival (1983), Percival and Guttorp (1994),
Percival (1995), and Howe and Percival (1995).

2



0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

Figure 1. High frequency contribution (in grey) to the total variance of a white
noise process (left) and an AR(1) process (right).

appropriate to refer to E(a, b) as a multiscale variance ratio. The recursive application of this

procedure generates a family of tests whose joint limit distribution is multivariate normal under

mild restrictions.

While the main intuition behind multiscale variance ratios originates under covariance stationar-

ity assumptions, the corresponding test statistics is informative in more general scenarios. Indeed,

the null hypothesis can be relaxed to allow for a degree of non-stationarity, specifically, for het-

eroskedastic white noise. Heteroskedastic white noise is an uncorrelated process with varying vari-

ance. We develop the asymptotic theory of multiscale variance ratios for uncorrelated but possibly

dependent processes within the framework of near-epoch dependence (NED). Besides accommodat-

ing heterogeneity, there are three further benefits of this approach. Firstly, the asymptotic results

originate from one of the most general gaussian central limit theorems for dependent processes

(De Jong, 1997). Secondly, it permits trending higher moments (see Assumption A and Assump-

tion B1). Finally, it leverages a rich literature devoted to the derivation of the NED property for

many nonlinear time series models and, thus, parametric restrictions for the validity of our test can

be obtained in several typical cases.2

We contribute to the literature on tests for serial correlations in several ways. First, the design we

propose leads to serial correlation tests with desirable empirical size and power in small samples.

Second, as argued in the previous paragraph, our test is robust to the presence of higher order

dependence, heteroskedasticity, and trending moments, while at the same time the asymptotic

theory is developed in great generality. Third, our is the first test of serial correlation that utilized

directly the wavelet coefficients of the observed time series to construct the wavelet-based test

statistics.3 The tests we design generalize, on one hand, variance ratios tests (Lo and MacKinlay,

1988), on the other, they are related to ratios of quadratic forms and Von Neumann ratios (1941).

In addition, since the proposed test statistic does not rely on a point estimate of the spectral

2These results include GARCH, IGARCH, FIGARCH, ARCH(∞) (Davidson, 2004), ARMA, Bilinear models,
switching and threshold autoregressive models, and smooth nonlinear autoregressions. (Davidson, 2002).

3This approach was originally put forth by Fan and Gençay (2010) in unit root testing. Within a similar
framework, Xue et al. (2010) propose discrete wavelet-based jump tests to detect jump arrival times in high frequency
financial time series data.
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density, the rate of convergence issues relating to the nonparametric spectral density are not of first

order of importance.

One of the well-known time-domain portmanteau tests for serial correlation is the Box and

Pierce’s test QK (BP). Given independent and identically distributed observations, Box and Pierce

(1970) show that the sum of K sample autocovariances times the number of observation is ap-

proximately distributed as a Chi-squared distribution with K degrees of freedom; statistically large

values of QK indicate a likely serial correlation among the data. In practice, the strict restriction of

independence and homogeneity are violated, leading to possibly very inaccurate inference. There

is a long streak of papers that address these limitations, starting from the small sample improve-

ments of Ljung and Box (1978), to the more recent robustification program of Lobato (2001) and

Lobato, Nankervis, and Savin (2002). Robust inference can also be achieved using bootstrapping

methods. Building on the block bootstrap inference for autocorrelations of Romano and Thombs

(1996), Horowitz, Lobato, Nankervis, and Savin (2006) develop a blocks-of-blocks bootstrap that

reduces the error rejection probability to nearly zero for samples with at least 500 observations.

Finally, Escanciano and Lobato (2009) (EL) combine robustification techniques with a data-driven

approach for automatic lag selection. The resulting adaptive test has particularly high empirical

power in finite samples.

Frequency-domain tests provide an alternative framework for test of serial correlation. Hong

(1996) uses a kernel estimator of the spectral density for testing serial correlation of arbitrary

form. His procedure relies on a distance measure between two spectral densities of the data and

the one under the null hypothesis of no serial correlation. Paparoditis (2000) proposes a test

statistic based on the distance between a kernel estimator of the ratio between the true and the

hypothesized spectral density and the expected value of the estimator under the null. Wavelet

methods are particularly suitable in such situations where the data has jumps, kinks, seasonality

and nonstationary features. The framework established by Lee and Hong (2001) is a wavelet-based

test for serial correlation of unknown form that effectively takes into account local features, such as

peaks and spikes in a spectral density. Duchesne (2006) extends the Lee and Hong (2001) framework

to a multivariate time series setting. Hong and Kao (2004) extend the wavelet spectral framework

to the panel regression. The simulation results of Lee and Hong (2001) and Duchesne (2006)

indicate size over-rejections and modest power in small samples. Reliance on the estimation of the

nonparametric spectral density together with the choice of the smoothing parameter affects their

small sample performance. Recently, Duchesne et al. (2010) have made use of wavelet shrinkage

(noise suppression) estimators to alleviate the sensitivity of the wavelet spectral tests to the choice of

the resolution parameter. This framework requires a data-driven threshold choice and the empirical

size may remain relatively far from the nominal size. Therefore, although a shrinkage framework

provides some refinement, the reliance on the estimation of the nonparametric spectral density

slows down the rate of convergence of the wavelet-based tests, and consequently leads to poor small

sample performance.

In Section II, we fix the notation, describe the discrete wavelet transform, and present the

concept of near-epoch dependence together with the law of large numbers and the central limit

theorem from which our main results will obtain. In Section III, we introduce and motivate our
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tests. In Section IV we study its large sample distribution. In Section V, we analyze the small

sample properties through several Monte Carlo simulations. A brief conclusion follows afterwards.

II. Preliminaries

Let yt be a stochastic sequence with E(yt) = 0 and var(yt) = σ2
t . If yt is homoskedastic, that

is σ2
t = σ2 for all t, and uncorrelated, that is cov(yt, ys) = 0 for all s 6= t, then yt is called white

noise. If homoskedasticity is violated, we refer to yt as heteroskedastic white noise. We consider

tests of the null hypothesis of no correlation, H0 : cov(yt, ys) = 0 for all s 6= t, against correlated

alternatives, H1 : cov(yt, ys) 6= 0 for some s 6= t. A finite sample realization of yt with T observation

is denoted with {yt} and, when viewed as a vector in RT , we use the notation yT , or simply y,

leaving T understood when there is no chance for confusion. Throughout the paper we impose

periodic boundary conditions on {yt}, that is

yt ≡ yt mod T ,
4

and we define s2
n(y) as

(1) s2
n(y) =

n∑
t=1

var(yt) + 2
n∑
t=2

n−1∑
k=1

cov(yt, yt−k) .

A stochastic sequence yt gives rise to a filtration of sigma fields

F t+mt−m (x) ≡ σ(xt−m, . . . , xt+m) ,

where F t+mt−m (x) is the smallest sigma field on which {xt−m, . . . , xt+m} are measurable, that is the

collection of sets of the form x−1
i (B) where B is a measurable set in the codomain of xi and the

index i ranges from t − m to t + m. Either bounds can be let go to infinity, yielding the sigma

fields F t−∞—containing the information from the remote past up to now—and F∞t —containing

the information from the present to the remote future. When there is no risk of confusion, we will

write F t+mt−m for F t+mt−m (x). All proofs can be found in the Appendix.

In developing the statistical properties of our test for serial correlation, we consider a very

general null hypothesis, namely that the data generating process is heteroskedastic white noise,

thus restricting only the correlation properties of the process while leaving higher order dependence

completely unconstrained. In order to remain close to the intention of a very general null hypothesis,

we develop the asymptotic theory for our serial correlation test in terms of concept of near-epoch

dependence (NED). For a stochastic sequence xt define

αm ≡ sup i∈Z sup {A∈Ft−∞,B∈F∞t }|P (A ∪B)− P (A)P (B)|

φm ≡ sup i∈Z sup {A∈Ft−∞,B∈F∞t ,P (A)>0}|P (B|A)− P (B)| .

Then, if φm = o(m−a−ε) for ε > 0, then xt is φ-mixing of size −a. If αm = o(m−a−ε) for ε > 0,

then xt is α-mixing of size −a.

4The notation a−b mod T stands for “a−b modulo T”. If j is an integer such that 1 ≤ j ≤ T , then j mod T ≡ j.
If j is another integer, then j mod T ≡ j+nT where nT is the unique integer multiple of T such that 1 ≤ j+nT ≤ T .
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Definition 1 (Adapted from Davidson (1995), Definition 17.1, page 261). A stochastic sequence

xt is said to be near-epoch dependent on εt in Lp-norm for p > 0 if

(2) ‖xt − E[xt|F t+mt−m (ε)]‖p ≤ dtνm

where νm → 0 as m→∞ and dn is a sequence of positive real numbers such that dt = O(‖xt‖p).5

Any process xt satisfies Definition 1 will be referred to as “Lp-NED on εt” for short. The

concept of near-epoch dependence was popularized in the econometrics literature by Gallant and

White (1988), but its inception can be traced back to the work of Ibragimov (1962). As pointed out

by Davidson (1995), near-epoch dependence is not an alternative to mixing assumptions, instead

it allows to establish useful memory properties of xt in terms of those of εt.

When the innovation process εt is mixing, powerful laws of large numbers and central limit

theorems can be established for NED processes.6 In order to apply these results, the following

proposition will be useful (a generalization of Theorem 17.9 in Davidson, 1995, from L2 to Lp

processes).

Proposition 2. If xt and yt be Lp-NED on {εt} of size −φx and −φy respectively, then xtyy is

Lp/2-NED of size −min(φx, φy) on {εt}.

A. Wavelet Transformations

In this section we introduce the Maximum Overlap Discrete Wavelet Transform (MODWT).7

A vector {hl} = (h0, . . . , hL−1) in RL gives rise to a linear time invariant filter by means of the

convolution operation: Given a sequence to be filtered {yt}, the convolution of {hl}, and {yt} is

the sequence

h ∗ yt =

l=∞∑
l=−∞

hlyt−l , ∀t ,

where we define hl = 0 for all l < 0 and l ≤ L.

A wavelet filter is a linear time invariant filter {hl} of length L, such that for all n 6= 0:

(3)
L−1∑
l=0

hl = 0 ,
L−1∑
l=0

h2
l = 1/2 ,

∞∑
l=−∞

hlhl+2n = 0 .

In words, h sums to zero, has norm 1/2, and is orthogonal to its even shifts. The natural complement

to the wavelet filter {hl} is the scaling filter {gl} determined by the quadrature mirror relationship

gl = (−1)l+1hL−1−l for l = 0, . . . , L− 1 .

5The sequence dt is a technical device used to accommodate trending moments. For all the data generating
processes encountered in the examples, it can be set equal to 1.

6See, among others, Davidson (1992, 1993, 1995); De Jong (1997).
7This section closely follows Gençay et al. (2001), see also (Percival and Walden, 2000, Chap. 5).It is common in

the literature distinguish the objects related Discrete Wavelet Transform from those related to the Maximum Overlap
Discrete Wavelet Transform by placing a tilde (∼) in the latter case. Since all quantities in the main part of the
paper refer to the MODWT and we believe there is little scope for confusion, we warn the reader that in this paper
we do not follow this convention.
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The scaling filter satisfies the following basic properties, analogous to Equations 3:

(4)
L−1∑
l=0

gl = 1 ,
L−1∑
l=0

g2
l = 1/2 ,

∞∑
l=−∞

glgl+2n = 0 ,
∞∑

l=−∞
glhl+2n = 0 ,

for all nonzero integers n.

In general, the definitions of wavelet and scaling filter do not imply any specific band-pass

properties (see Percival and Walden, 2000, Chap. 4, Pag. 105, for an in-depth discussion). Further

conditions must be imposed to recover the domain frequency interpretation associated with the con-

tinuous wavelet transform and to guarantee that {hl} is a high-pass filter (which, as a consequence

of the QMF relationship, implies that {gl} is a low-pass filter). An example of such additional

constrains, sometimes referred to as regularity conditions, are the vanishing moment conditions

introduced by Daubechies (1993). Nevertheless, all the results in the paper hold without any reg-

ularity conditions on the filters and hence to any arbitrary dyadic band-pass decomposition. In

particular, when the filters {hl} and {gl} applied to an observed time series are from a wavelet

filter-bank, we can separate high-frequency oscillations from low-frequency ones.

Formally, the MODWT of level M is a linear operator and can be represented in terms of matrix

operations:

w =Wy

whereW is a (M+1)T×T matrix. The matrixW is constructed by assembling M+1 sub-matrices

of dimensions T × T :

W = [W1,W2, · · · ,WM ,VM ]′ ,

whose action is defined in terms of wavelet filter {hl} and scaling filter {gl}. Specifically,

(Wmy)t =

Lm∑
l=0

hm,lvm,t−l mod T

where Lm := (2m − 1)(L− 1) + 1. The m-th level filter {hm,l} can be written as a filter cascade

hm = h ∗ g ∗ . . . ∗ g︸ ︷︷ ︸
m−1

,

where g is the scaling filter and ∗ denotes a convolution.8

The MODWT of the observed time series yT can be organized into M + 1 vectors of length T

(5) w = (w′1, . . . ,w
′
M ,v

′
M )′ ,

8A general explicit formula for hm requires working with transfer functions in Fourier space

hm(l) =
1

L

L−1∑
f=0

H

(
2m−1f

N

)m−2∏
k=1

G

(
2kf

N

)
e2iflπ/L

where H and G are the Discrete Fourier Transforms of h and g, respectively:

H(f) =

L−1∑
l=0

hle
2iflπ/L , G(f) =

L−1∑
l=0

gle
2iflπ/L .
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where M ≤ log2 T be the decomposition level of the MODWT. In practice, w is computed re-

cursively via a so-called pyramid algorithm. Each iteration of the MODWT pyramid algorithm,

requires three objects: the data vector to be filtered, the wavelet filter {hl} and the scaling filter

{gl}. The initial step consists of applying the wavelet and scaling filter to the data with each filter

to obtain the first level wavelet and scaling coefficients:

w1,t = (w1)t =

L−1∑
l=0

hlyt−l mod T and v1,t = (v1)t =

L−1∑
l=0

glyt−l mod T for all t = 1, . . . , T .

The length T vector of observations has been high- and low-pass filtered to obtain T coefficients

associated with this information. The m-th step consists of applying the filtering operations as

above to obtain the (m+ 1)-st level of wavelet and scaling coefficients

(6)

wm+1,t = (w1)t =

L−1∑
l=0

hlvm,t−l mod T and vm+1,t = (v1)t =

L−1∑
l=0

glvm,t−l mod T for all t = 1, . . . , T .

Keeping all vectors of wavelet coefficients, and the level M scaling coefficients, we obtain the

decomposition of Equation 5.

III. Multi-scale Variance Ratios

Consider the general variance ratio

E(a, b) = 2

∫ b

a
Sy(f) df

/
var(y) .

The numerator of E(a, b) can, for specific intervals, be expressed in terms of the wavelet variance.

Indeed, neglecting the leakage of the wavelet filter, the following approximation holds9

(7) wvarm(y) ≈ 2

∫ 1/2j

1/2j+1

Sy(f) df .

For m = 1, the integral in Equation (7) corresponds to the area E1 in Figure 1. Formally, the

wavelet variance for a stationary process y is defined as

(8) wvarm(y) ≡ var(wm,t) .

From equation (6), we see that wm,t is a linear process, obtained by applying the time invariant filter

hm to a zero mean process y. If y is stationary, then the spectrum of wm,t is Sm(f) = |Hm(f)|2Sy(f),

where Hm(f) is the discrete Fourier transform of the filter {hi} (see Brockwell and Davis, 2009,

Page 121, Eq. 4.4.3.). If follows that

(9) wvarm(y) =

∫ 1/2

−1/2
Sm(f) df =

∫ 1/2

−1/2
|Hm(f)|2Sy(f) df

9See Percival and Walden (2000), Equation (297a), page 297.
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In particular, if {yt} is a covariance stationary white noise, then Sy(f) = σ2
y and

wvarm(y) = σ2
y

∫ 1/2

−1/2
|Hm(f)|2 df = σ2

y‖hm‖2

= σ2
y‖g‖2

m−1∏
i=1

‖h‖2 = σ2
y2
−m

The second equality uses Parseval’s identity, the third equality holds because the norm of a convo-

lution is the product of the norms, and the last equality follows from the normalization Equation

(3). In conclusion, we proved the following

Theorem 3. The wavelet variance ratio for a stationary white noise process is

Em(y) ≡ wvarm(y)

var(y)
=

1

2m
.

When there is no risk of confusion, we will write Em for Em(y). In the reminder of this section we

introduce a family of statistics that detect serial correlation by testing the implications of Theorem

3.

A. Sample Multiscale Variance Ratios: Scale One

The Maximum Overlap Discrete Wavelet Transform (MODWT) consists of a set of linear filters

that given a time series generates a collection of vectors. The design of the MODWT filters

are such that each of the resulting vectors contains the characteristics of the original time series

corresponding to a specific time-scale.10

We illustrate the workings of the MODWT and the intuition behind our test with the sim-

ple case of a first level decomposition using the Haar filter. Consider the Haar wavelet filter

{hl}10 = (1/2,−1/2) and the corresponding scaling filter {gl}10 = (1/2, 1/2). The wavelet and

scaling coefficients of a time series {yt}Tt=1 are given by

wt,1 =
1

2
(yt − yt−1), t = 1, 2, . . . , T,(10)

vt,1 =
1

2
(yt + yt−1), t = 1, 2, . . . , T.(11)

The wavelet coefficients {wt,1} capture the behavior of {yt} in the high frequency band [1/4, 1/2],

while the scaling coefficients {vt,1} capture the behavior of {yt} in the low frequency band [0, 1/4].

A sample analogue of E1 is readily constructed following the analogy principle

(12) Ê1,T =
ŵvar1 y

v̂ar y
=

∑T
t=1w

2
1,t∑T

t=1 y
2
1,t

.

We show (see Theorem 4) that under H0, Ê1,T is close to 1/2, since the numerator is the half of the

denominator, while under H1 the variance ratio Ê1,T , in general, deviates from 1/2.

10The MODWT goes by several names in the literature, such as the stationary DWT by Nason and Silverman
(1995) and the translation-invariant DWT by Coifman and Donoho (1995). A detailed treatment of MODWT can
be found in Percival and Mofjeld (1997), Percival and Walden (2000) and Gençay et al. (2001).
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The definition of the variance ratio Ê1,T can be applied to the wavelet decomposition obtained

from a generic filter wavelet {hi}. As before, we expect Ê1,T to be close to 1/2 under H0.

B . Sample Multiscale Variance Ratios: Scale m

The intuitive results that we discussed above can be generalized to arbitrary scales. For a

white noise process, variance is asymptotically equi-partitioned in Fourier space: each frequency

contributes an equal share to the total variance of the process. An analogous result holds in “wavelet

space”: the variance at scale m contributes a ratio of 2−m to the total variance. The variance ratio

corresponding to the resolution scale m is defined as

Êm,T =
ŵvarm y

v̂ar y
=

∑T
t=1w

2
m,t∑T

t=1 y
2
m,t

.

where wm are the m-th level wavelet coefficients of y.

To formalize the above discussion, we need to prove that Êm,T is a consistent estimator of the

wavelet variance ratio. Indeed, the next result goes a step further: as the sample multiscale variance

ratio well is defined for nonstationary processes, we show that Ê converges in probability to 2−m

even for (unconditionally) heteroskedastic white noise processes, that is uncorrelated processes that

may fail to be covariance stationary.

Assumption A. {yt} is stochastic sequence that is Lr bounded for r > 2 and Lp-NED on an

α-mixing process for p ≥ 2.

Theorem 4. Let {yt} be a heteroskedastic white noise process with zero mean. Under Assumption

A

Êm,T
p−→ 1

2m

Example 5 (GARCH(1,1) with α-mixing innovations, Hansen (1991)). Let {εt} be a α-mixing

process and define

xt = σtεt, σ2
t = ω + βσ2

t−1 + αx2
t−1

for some real numbers ω, β, and α. Hansen (1991) shows that if

(13)
(
E
[(
β + αε2t

)p |F t−1
−∞(ε)

])1/r ≤ c < 1 a.s. for all t,

then {xt, σt} is Lr-NED on {εt} with an exponential decay of NED coefficients. With p = 2, the

condition (13) is equivalent to

β2 + 2αβµ2
t + α2µ4

t < 1 a.s. for all t,

in which µ4
t = E(ε4t |F t−∞) is the conditional kurtosis.

Example 6 (ARCH(∞) with i.i.d. innovations, Davidson (2004)). Let {εt} be a i.i.d. process, with

zero mean and unit variance, and define:

xt = σtεt, σ2
t = ω +

∞∑
i=1

αix
2
t−i .
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This specification is called ARCH(∞) model. It encompasses several nonlinear time series, including

GARCH (Bollerslev, 1986), IGARCH (Engle and Bollerslev, 1986), FIGARCH Baillie et al. (1996).

Assume that Eε4 exists and
∑∞

i=1 αi < (Eε4)2. Davidson (2004) shows that if 0 ≤ αi ≤ Ci−1−λ for

some λ > λ0, then xt is L2-NED on εt of size −λ0.

Example 7 (Bilinear Model with i.i.d. innovations, Davidson (2002)). Consider the following

bilinear models

xt =

p∑
j=1

αjxt−j +

m∑
j=1

βjxt−jεt−1 +

r∑
j=1

γjεt−j ,

This parametric family is referred to as BL(p, r,m, 1) and it is discussed in detail in (Priestley, 1988,

Chapter 4). Under the assumption of Davidson (2002) concludes that the covariance stationary

BL(p, r,m, 1) is L2-NED on {εt} with an exponential decay of NED coefficients. A simple example

of bilinear white noise is the process

xt = βxt−2εt−1 + ε, εt ∼ i.i.d(0,1) .

It is covariance stationary if 0 < β < 1/
√

2 (see Granger and Newbold, 1986).

In the next section we study the asymptotic distribution of the wavelet ratio Êm,T .

IV. Asymptotic Analysis

In the reminder of the paper, the process {zm,t} is defined as the cross-product component of

the square of each wavelet coefficient

zm,t :=

L−1∑
i=0

L∑
j>i

hm,ihm,jyt−iyt−j .

When there is no risk of confusion, we omit the index m. Our next result establishes the asymptotic

distribution of the wavelet variance ratio Êm,T .

Assumption B. Fix a wavelet filter hm.

B1. for r > 1 and for all i, j, k, l such that 0 ≤ i < j ≤ Lm and 0 ≤ k < l ≤ Lm,

{yt−iyt−jyt−kyt−l/M4,t} is uniformly Lr-bounded for r > 1, where

M4,t =

Lm∑
i=0

Lm∑
j>1

Lm∑
k=0

Lm∑
l>1

hihjhkhlE(yt−iyt−jyt−kyt−l);

B2. For all positive i ≤ Lm, {ytyt−i} is a stochastic sequence that is Lr-bounded for r > 2 and

Lp-NED of size −1/2 on a φ-mixing process for p ≥ 2.

B3. var(zt) ∼ tβ and s2
n(z) ∼ n1+γ, β ≤ γ.

Assumption B imposes very mild restrictions on {yt} and allows for substantial deviation from

stationarity. Condition B3 can alternatively be expressed in terms of rate of growth the fourth order

cumulants of {yt}, we omit the resulting expression as it is not particularly revealing. Condition

B1 is infinitesimally stricter than allowing for trending joint fourth moments in {yt}. Notice that

neither B1 nor B2 require finite joint fourth moments for {yt} but place no explicit restrictions
11



on the fourth moments Ey4
t . For instance, our asymptotic results are valid under the null of

independently (but possibly heterogenously) distributed Student’s t shocks with ν ≥ 3 degrees of

freedom. We discuss GARCH(1,1) processes in detail below (Example 9).

Proposition 8. Let {yt} be a a heteroskedastic white noise process with zero mean and let

T−1
T∑
t=1

Ey2
t

p−→ σ2 <∞ .

Under Assumption B √
Tσ4

4s2
T (z)

(
Êm,T −

1

2m

)
d−→ N(0, 1) ,

where sT (z) is defined in Equation (1).

Proposition 8 suggests the following definition for a test statistics

GSm =

√
Tσ4

4 avar(z)

(
Êm,T −

1

2m

)
,

where avar(z) is the probability limit of s2
T (z). To implement the test, generally the asymptotic

variance of {zt} needs to be estimated. The asymptotic results considered here extend seamlessly

to the case of estimated normalizations (Davidson, 1995, Chapter 25). Generally any estimator

from the class of kernel estimators is appropriate.11

Example 9 (GARCH(1,1) with α-mixing innovations). Consider again Example 5. A straightfor-

ward generalization of of Hansen’s computation (1991, Proof of Theorem 1, page 185) shows that

{ytyt−1} is L2-NED if and only if condition (13) with p = 4 is satisfied. Specifically, {ytyt−1} is

L2-NED whenever

β4 + 4αβ3µ2
t + 6α2β2µ4

t + 4α3βµ6
t + α4µ8

t ≤ 1 a.s. for all t ,

in which µkt = E[εk|F t−∞]. If εt ∼ N(0, 1) are i.i.d., the condition reads

β4 + 4β3α+ 18β2α2 + 60βα3 + 105α4 ≤ 1 a.s. for all t .

The solution set of this inequality is depicted in Figure 2.

Estimating the asymptotic variance is not always necessary. If yt is a white noise whose cross-

joint cumulants of order four are zero, the asymptotic variance of test can be computed exactly.

More specifically, let Xijkl
t = (Xt−i, Xt−j , Xt−k, Xt−l) and ξ a vector in R4 and M(ξ). be the

moment generating function Xijkl
t

M ijkl
t (ξ) = E exp(ξ′Xijkl

t )

has as coefficients of its Taylor expansion

M(ξ) =
∑
a

ξaκ
a +

1

2!

∑
a,b

ξaξbκ
ab +

1

3!

∑
a,b,c

ξaξbξcκ
abc + · · ·

11See Andrews (1991) for a general theory of kernel estimators. Among several approaches and kernel choices we
did not find significance differences pointing to a strong preference for one method over the others.
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Figure 2. Let {εt} be a identically and independently normally distributed. Let
xt = σtεt and σ2

t = ω + βσ2
t−1 + αx2

t−1 for some real numbers ω, β, and α. The

pink region depicts the solution to the inequality β2 + 2αβ +α2µ4
t < 1. In this case

xt satisfies Assumption A. The purple region depicts the solution to the inequality
β4 + 4β3α+ 18β2α2 + 60βα3 + 105α4 ≤ 1. In this case xt satisfies Assumption B.

The cumulants of Xijkl
t are defined as the coefficients κ(•) in the Taylor expansion

logM(ξ) =
∑
a

ξaκ
a +

1

2!

∑
a,b

ξaξbκ
a,b +

1

3!

∑
a,b,c

ξaξbξcκ
a,b,c + · · ·

Notice how commas separating indexes serve to distinguish cumulants from moments when neces-

sary.

Corollary 10. Let {yt} be white noise process with zero four order cumulants. Then√
T

am

(
Êm,T −

1

2m

)
→ N (0, 1)

with

am =
∑
s∈Z

imax∑
i=imin

jmax∑
j>i

hm,ihm,jhm,i−shm,j−s ,

where hm is the wavelet filter used in the construction of Êm and

imin = max(0, s) , imax = min(Lm, Ln + s)− 2 , jmax = min(Lm, Ln + s)− 1 .

The computation of am is trivial but tedious.12 The following Corollary contains several asymp-

totic results for the Haar filter.

12We implement a routine in a symbolic algebra program to compute both exact and approximate values of am
for different filters and different resolution scales. The source code is available upon request.
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Corollary 11 (Asymptotics for the Haar filter). Let h1 =
(

1
2 ,−

1
2

)
(the Haar filter). The GSm test

statistics for the scales 1 to 4 are

√
4T

(
Ê1,T −

1

2

)
,

√
32T

3

(
Ê2,T −

1

4

)
,

√
256T

15

(
Ê3,T −

1

8

)
,

√
2048T

71

(
Ê4,T −

1

16

)
,

respectively. Their asymptotic distribution is the standard normal.

A. Multivariate multiscale tests

Each test in the GS family has a particularly strong power against specific alternatives. For

example, for m = 1, the test is particularly powerful against AR(1) and MA(1) alternatives, while

for m = 2, the test has significant power against AR(2) and MA(2) alternatives. In the reminder

of this section we derive the asymptotic joint distribution of these tests. These results will allow

us to combine these tests to gain power against a wide range of alternatives.

Theorem 12. Let {yt} be a heteroskedastic white noise process with zero mean. Under Assumption

B, the vector (GS 1, . . . ,GSN ) has asymptotic distribution N (0,Σ), where

Σi,j =
acov(zizj)

avar(zi) avar(zj)
.

Moreover, Large sample inference can be implemented using the test statistics

GSMN = (GS 1, . . . ,GSN )Σ−1(GS 1, . . . ,GSN )T ,

which is asymptotically distributed as a χ2
N distribution.

The proof of this results follows closely the proof of Proporition 8, we omit it in the interest

of space. Large sample inference on the values of the vector (GS 1, . . . ,GSN ) can be handily

implemented using the χ2 distribution. Indeed, it is a standard result (see Bierens, 2004, Theorem

5.9, page 118) that for a multivariate normal n-dimensional vector X and a non-singular n × n
matrix Σ, XTΣ−1X is distributed as a χ2

n. Accordingly, we define the test statistics

GSMN = (GS 1, . . . ,GSN )Σ−1(GS 1, . . . ,GSN )T ,

whose asymptotic distribution is a χ2
N .

As before, if the fourth cumulants of yt vanish, the asymptotic variance can be computed explic-

itly as a function of the filters {hm}. Let

γm,n(s) = σ4
imax∑
i=imin

jmax∑
j≥i

hm,ihm,jhn,l−shn,k−s

with

imin = max(0, s) , imax = min(Lm, Ln + s)− 2 , jmax = min(Lm, Ln + s)− 1 .

Define, furthermore,

am,n =
1

σ4

∑
s∈Z

γm,n(s)

14



and let A be an N ×N matrix with ones on the main diagonal and off-diagonal entries

Amn =
am,n√
aman

Corollary 13. The vector (GS 1, . . . ,GSN ) has asymptotic distribution N (0, A).

In the case of the Haar filter we have:

Corollary 14 (Multi-scale asymptotics for the Haar filter).GS 1

GS 2

GS 3

 d−→ N (0, A) , with A =

 1 −1/
√

6 −5/
√

60

−1/
√

6 1 2/
√

360

−5/
√

60 2/
√

360 1

 .

V. Asymptotic Local Power and Finite Sample Performance

In this section, we evaluate of the GSM test family generated by the Haar filter using two criteria,

namely asymptotic local power and finite sample performance.13

First, we illustrate, through an example, the inconsistency of the family GSMN . Consider the

spectrum Sy of the stochastic process y:

(14) Sy(f) =


1
2 + 1

4sin(8πf) if f ∈
(

1
4 ,

1
2

]
1
2 + 1

8sin(16πf) if f ∈
(

1
8 ,

1
4

]
. . .

The spectrum Sf (y) is shown in Figure 3 and it is non-flat and, hence, the corresponding time

series is correlated. At the same time the area underneath Sy within any of the blocks considered

by the dyadic decomposition of the frequency space is consistent with the equipartition of variance

result valid for white noise processes (Theorems 3 and 4).

For a feasible wavelet filter whose Fourier transform is H, a process x for which the test is

inconsistent is one whose spectrum Sx is a solution to the integral equation H ∗ Sx = Sy, where ∗
denotes convolution and Sy is given by (14).

At the same time, for any finite ARMA model there is a test in the {GSMN} family which is

consistent against it. Recall that the spectrum of a finite ARMA process is a trigonometric rational

function in the frequency domain (Theorem 4.4.2 Brockwell and Davis, 2009, page 121):

(15) Sy(f) =
P (f)

Q(f)

where P (f) and Q(f) are trigonometric polynomials. With no loss of generality, assume that

var(y) = 1. Let F be the set of solutions to the equation

(16)
P (f)

Q(f)
− 1

2
= 0,

and let fmin be

fmin = min
f>0
{f ∈ F} .

13Results for other wavelet filters are similar and available from the authors upon request.
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Figure 3. Spectrum of an ARMA model of infinite degree. No test of the GSM
family is consistent against this alternative.

Since Equation (16) has only a finite number of solutions on a compact set (see Powell, 1981), fmin

is well defined and positive. Choose k such that

2−k−1 < fmin ,

then the test GSk is consistent against H1 : Sy(f) = P (f)
Q(f) . Indeed, Sy(f) > 1/2 or Sy(f) < 1/2 for

all f in (2−k−1, 2−k−2) and therefore the expected value of GSk on the process y with spectrum Sy

is E[GSk(Xf )] 6= 0.

A. Asymptotic Local Power

Let χ2
` (c) denote the non-central χ2 distribution with non-centrality parameter c and ` degrees

of freedom. Consider the family of alternative hypothesis

(17) H1,T : ST (f) = T−1/2

(
S(f)− 1

2

)
+

1

2
,

where S(f) is a non-constant spectrum. Recall that

Ek =

∫ 2k

2−k−1

|Hk(f)|2S(f)df

and that, in probability, Êk → Ek and, therefore, GSk(X)→ Ek/E0 − 1/2k. Let

TGSN =
√
TE(GS1(X), . . . , GSN (X))

= (E1/E0 − 1/21, . . . , EN/E0 − 1/2N ) .
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Since the estimator of the covariance matrix of (GS1(X), . . . , GSN (X)) is consistent under H1,T ,

it follows that the distribution of the test GSN is the non-central χ2
N (c), where

c = T ∗GSMN (X)

= TGS′1,Navar(TGS1,N )−1TGS1,N .

Therefore the asymptotic local power of GSMN is given by

Pr(χ2
N (c) > χ2

N,1−α),

where χ2
N,1−α denotes the (1− α)-quantile of a χ2

N distribution.

Figure 4. Asymptotic rejection rates at the nominal level α = 0.10 against a two-
dimensional AR family. The first and second plot (left and center, respectively)
depict the asymptotic rejection rate of the one dimensional tests GS1 and GS2

together with their 0.10 level (in black). The third plot (right) shows the asymptotic
power of the bivariate test GSM2: in this case the 0.10 level is only one point,
corresponding to α1 = α2 = 0.

Figure 4 plots the asymptotic rejection rate for the nominal level α = 0.05 against the two

dimensional family of alternatives

yt = α1yt−1 + α2yt−2 + εt

where εt is Gaussian white noise. The first and second plot (left and center) depict the asymptotic

power of the univariate tests GS1 and GS2 for the Haar wavelet. The black lines correspond to

the 0.10 levels and highlight the subset of the parameter space for which the tests are inconsistent.

The third plot (right) shows the asymptotic power of the bivariate test GSM2: its 0.10 level is the

intersection of the 0.10 levels for the univariate tests and it consists of only one point, the origin

(α1, α2) = (0, 0).

B . Monte Carlo Simulations

Feasible tests are obtained from Theorem 12 replacing the matrix Σ with a known matrix. A

natural choice is to replace all the asymptotic quantities with consistent estimators, for example

using the Newey and West (1987) estimator. We denote the corresponding statistic with GSM ,

and also consider two additional feasible statistics:
17



1. First, the test statistics can be computed under the assumption that the fourth order cumu-

lants vanish, combining Corollary 11 and 14. We denote these statistics GSg and GSMg in

the univariate case and multivariate case, respectively.

2. Second, each levelGSi can be computed using an estimator of the long run variance (again, we

use the Newey and West’s estimator) while using the asymptotic covariance matrix implied

by vanishing fourth order cumulants. This feasible statistic is denoted with GSM∆.

TheGSg andGSMg tests display accurate empirical size in small samples. With 100 observations

and 50,000 replications, the rejection rates at the 1% level against yt ∼ N(0, 1) are 0.78%, 1.07%,

and 0.82% for the tests GSg1, GSg2, and GSMg
2 , respectively. At the 5% nominal level, the rejection

rates are 4.72%, 4.52%, 4.77%. Tables 1 and 2 contain a systematic comparison of the rejection

rates of GSMg
2 , GSM∆

2 , GSM2, the Qk test of Box and Pierce (1970), and the Esconciano-Lobato

test (EL, see Escanciano and Lobato, 2009). We consider sample sizes of 100, 300, 1000, and 5,000

observations and compute the empirical rejection rates form 50,000 replications of the following

five different data generating processes under the null hypothesis:

(1) A standard normal process yt, such that yt ∼ N(0, 1);

(2) A GARCH(1,1) process with i.i.d. standard normal innovations,

yt = σtεt , εt ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 ;

(3) A GARCH(1,1) process with i.i.d innovations following a Student’s t with 5 degrees of free-

dom (and an otherwise identical specification as above)

(4) An EGARCH(1,1) process with i.i.d standard normal innovations

yt = σtεt , εt ∼ N(0, 1) , log σ2
t = 0.001 + 0.5|εt| − 0.2εt + 0.95σ2

t−1 ;

(5) An mixture of two normals N(0, 1/2) and N(0, 1) with mixing probability 1/2.

(6) An heterogeneous normal with trending mean: yt ∼ N(0, t).

Insert Table 1 here.

Insert Table 2 here.

For a small sample size (100 observations), the GSMg
2 test has an accurate rejection rate across

several of the models analyzed, both at the 1% level and the 5% level, with the exception of the

EGARCH model and model (6) (trending variance). With larger sample sizes (1000 and above) and

in the presence of a marked deviation from normality, the gains from estimating the asymptotic

covariance matrix are significant. Indeed, under these circumstances, the size of the GSM1,2 is

accurate across all models (in particular at the 5% level). In general, the test GSM∆ performs

satisfactorily across all models: at the 1% level GSM∆ dominates EL in all cases but against

EGARCH, while at the 5% level with T ≥ 300 the two test perform very similarly (although, EL

maintains a significant edge against EGARCH).
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Figure 5 illustrates the empirical power functions of the tests GSg1 , GSg2 , and GSMg
2 against two

one-dimensional families of alternatives, an AR(1) model (AR1: yt = αyt−1 + εt) and a restricted

AR(2) model (RAR2: yt = αyt−2 + εt) with standard normal innovations. The rejection rates are

computed with respect to a 1% nominal size for sample sizes of 100, 300, and 1000 observations.

From the first row, it is apparent that the test GSg1 has strong power against an AR1 alternative

while at the same time its power is practically orthogonal to an RAR2 deviation from the null.

The second row shows that the test GSg2 has a complementary behavior: its power against AR1

deviations from the null is uneven, while it displays strong power against RAR2 deviations form the

null. Finally, the last row illustrates how the joint test GSMg
2 incorporates the best properties of

the single scale tests. The power of GSMg
2 is consistently high against AR1 and RAR2 alternatives.

The panels in Figure 5 also show that the power of the various tests increases steadily as the sample

size increases.

Insert Figure 5 here.

To further understand how the power of the GS test family varies against the two-parameter

family

(18) yt = α1yt−1 + α2yt−2 + εt , εt ∼ N(0, 1) ,

we plot in Figure 6 the contours of the power surface obtained varying α1 in the interval (−0.50, 0.50)

and α2 in (−0.45, 0.45). Simulations are carried out for a grid of values of the parameters spaced by

0.05 ans intermediate values are interpolated. The black lines correspond to 25%, 50%, 75%, and

100% percent power (starting form the center), while the grey lines correspond to 5% increments.

Approximately, contour lines of the power function of GSg1 test (first panel) run vertically, an

indication that the first scale test is not very sensitive to variations in the parameter α2. This

picture is approximately reversed in the second panel: the contour lines for the GSg2 test run

horizontally. In the third panel we see that the contour lines of the multi-scale test GSMg
2 are,

even in small samples, close to ellipses, the shape predicted by our asymptotic results.

Insert Figure 6 here.

In the reminder of this section we restrict our analysis to a size of 1% (results are similar at the

5% level) and a sample size of 100 observations.

An accurate analysis is contained in Table 3, where we compare the size adjusted power of the

three tests against the two-dimensional Gaussian AR(2) alternative defined in Equation (18). The

first column contains the size adjusted power of each test for various alternatives.14 In the second

column we report the relative power gains of the multi-scale test GSMg
2 with respect to the LB

tests, the BP test and the EL test. Against the great majority of the alternatives the GSMg
2 test

14Size adjusted power is computed using, for a given sample size, the empirical critical values obtained from Monte
Carlo simulations with 100,000 replications.
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outperforms the BP and LB tests.15 The GSMg
2 test clearly outperforms the EL test when the

first order parameter is negative (α1 < 0) with a power improvement of up to 125%. When α1 is

positive, neither test has a clear edge, with variations in power against various alternatives between

+44% and −49%. 16

In Table 4 we repeat the previous power analysis for AR(2) models with GARCH(1,1) innovations

(with the same parameters as in model (5)). Qualitatively the results are unchanged: the GSMg
2

outperforms the BP and LB tests across a wide variety of alternatives (by up to 283% and 311%,

respectively); the GSMg
2 also outperforms the EL test when the first order autoregressive coefficient

is negative (by up to 134%), while when α1 > 0, neither test has a clear advantage.

Insert Table 3 here.

Insert Table 4 here.

In econometric practice, it necessary to choose a value forN . Ultimately, this choice is dictated by

the amount of data available, as deeper wavelet decompositions consume more degrees of freedom.

According to Percival and Walden (2000), the properties of the wavelet variance estimator are well

approximated by its asymptotic distribution whenever T −Lh,m > 128, where Lh,m is the length of

the m− th level filter. Recall that Lh,m = (2m − 1)(Lh − 1) + 1, where Lh is the length of wavelet

filter. We report some size and power simulations comparing various of N up to 6. Table 5 shows

that in general there is a trade off between the depth of the wavelet decomposition and the sample

size: for small sample size, a shallower wavelet decomposition has better size properties.

Insert Table 5 here.

To investigate power as N is allowed to vary, we consider the restricted autoregressive model

rar(p) as yt = 0.1yt−p + εt for p = 1, 2, 4. Table 6 illustrates another tradeoff: lower values of N

correspond to higher power but only against ARMA models of lower order.

Insert Table 6 here.

Finally, in our simulations the choice of the wavelet family was generally influential, with small

idiosyncratic differences across various nulls and alternative models.

VI. Application to High Frequency Finance

In this section we apply our test and the AQ test to high frequency market data, specifically to

returns from transactions of Apple Inc. (AAPL). We use intraday data from January 2, 2012 to

15Analogous results hold for Gaussian MA(2) and Gaussian ARMA(2,2) alternatives. The results are very close
to those of Table 3. These results are available upon request.

16Despite our adjustments, sized-distortions remain because of the random nature of the Monte Carlo simulations.
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December 28, 2012 and restrict our sample to the 10 minutes time interval form 11:50 to 12:00.

Using data from TAQ we construct 1-second returns from transactions for the entire period and

test each day for serial correlation, so that for each test the sample consists of 600 observations.

Serial correlation at high frequency is on hand to liquidity measures (as an indirect estimate of the

bid-ask spread, see Roll, 1984) and on the other to market efficiency (see, for example, Jegadeesh

and Titman, 2001).

The average p-values over the 251 testing days for the tests GM∆
4 , GSM4 and AQ are 0.0077,

0.0109, and 0.0130, respectively (we do not report the other test because of the large size distor-

tions). On average, our wavelet based tests reject the null of no serial correlation slightly more

strongly than the AQ test. This example shows that our test can be useful in econometric practice.

VII. Conclusions

We use the wavelet coefficients of the observed time series to construct a test statistics in the

spirit of Von Neumann variance ratio tests. In our approach, there is no intermediate step such as

the estimation of the spectral density for the null and alternative hypotheses. Therefore, we are

not constrained with the rate of convergence of nonparametric estimators.

Our analysis of consistency and power does not apply to more general local alternatives, such as

H1,t : Sy(f) = T−1/2

(
S(f ;T )− 1

2

)
+

1

2
,

where the lag order is allowed to grow with T . On one hand, we have already established that all

tests are inconsistent against certain carefully designed alternatives. On the other, we expect that,

much like variance tests in the spirit of Lo and MacKinlay (1989), there is an optimal choice of N

that will maximize power(see for example Deo and Richardson, 2003; Perron and Vodounou, 2005).

A related, and more general, issue is that of choosing optimally the wavelet decomposition to be

used. Intuitively, it is clear that, for a given alternative, there is a choice of frequency bands that

will maximize power, namely those bands that deviate the most from the white noise baseline. The

development of an adaptive version of the current test could resolve the problem of inconsistency

while providing better all round power properties.

Another natural extension of the portmanteau framework is through the residuals of a regression

model. In the linear regression setting, the most well-known test for serial correlation is the d-test

of Durbin and Watson (1950). Alternative tests proposed by Breusch (1978) and Godfrey (1978)

are based on the Lagrange multiplier principle, but although they allow for higher order serial

correlation and lagged dependent variables, their finite sample performance can be poor. Our

current framework can be generalized to residual-based tests and it embeds Durbin-Watson’s d-test

as a special case. These extensions are currently under investigation by the authors.
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Figure 5. Empirical power functions of the tests GSg1 , GSg2 , and GSMg
2 (first,

second, and third row, respectively) against AR(1) and AR(2) alternatives (first
and second columns, respectively). The rejection rates are based on 5,000 replica-
tions with 1% nominal size for sample sizes of 100 (circle), 300 (triangle), and 1000
(square) observations.



yt = α1yt−1 + α2yt−2 + εt

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

−0.4

−0.2

0.0

0.2

0.4

G
S

1
G

S
2

G
SM

2

−0.4 −0.2 0.0 0.2 0.4
α1

α 2

Figure 6. Contours of the power surface of the tests GSg1 , GSg2 , and GSMg
2 against

the Gaussian AR(2) alternative. Simulations are carried out for a grid of values of the
parameters obtained varying α1 in the interval (−0.50, 0.50) and α2 in (−0.45, 0.45)
in steps of size 0.05. Intermediate values are interpolated. From the center of each
graph, the black lines correspond to the 25-th, 50-th, 75-th and 100-th quantiles,
while each grey line corresponds to a 5% increment.
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Table 1
Rejection rates under the null hypothesis at 1% nominal level

Rejection probabilities in percentages of tests with nominal levels of 1% against five different data generating
processes under the null hypothesis:

(1) A standard normal process yt ∼ N(0, 1);
(2) A GARCH(1,1) process with i.i.d. standard normal innovations,

yt = σtεt , εt ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 ;

(3) A GARCH(1,1) process with i.i.d innovations following a Student’s t with 5 degrees of freedom;
(4) An EGARCH(1,1) process with i.i.d standard normal innovations

yt = σtεt , εt ∼ N(0, 1) , log σ2
t = 0.001 + 0.5|εt| − 0.2εt + 0.95σ2

t−1 ;

(5) An mixture of two normals N(0, 1/2) and N(0, 1) with mixing probability 1/2.
(6) An heterogeneous normal with trending mean: yt ∼ N(0, t).

The tests GSMg, GSM∆, and GSM are computed assuming zero fourth order cumulants, estimating the
scaling coefficients, and estimating scaling coefficients and asymptotic covariance matrix, respectively; Qk is
the Box and Pierce test with k lags; EL is the Escanciano and Lobato test. All size simulations based on
50,000 replications.

N(0, 1) N(0, 1)-GARCH(1,1) t5-GARCH(1,1)

T 100 300 1000 5000 100 300 1000 5000 100 300 1000 5000

GSMg
2 0.82 0.92 0.87 1.04 1.32 1.81 1.62 1.86 1.76 2.84 4.04 5.16

GSM∆
2 2.75 1.47 1.12 1.21 2.60 1.65 1.12 1.22 2.14 1.04 1.20 1.12

GSM2 5.25 2.75 1.87 1.54 5.13 2.72 1.64 1.55 4.26 2.14 1.70 1.25

Q5 0.86 0.88 0.95 1.06 1.22 1.94 1.81 2.17 1.81 3.59 5.67 7.51
Q10 0.90 1.02 1.03 1.08 1.60 2.34 2.26 2.70 1.95 4.24 7.08 10.51
Q20 0.88 1.15 1.02 1.14 1.51 2.40 2.59 2.63 1.59 4.98 8.51 12.08
EL 2.73 2.28 1.71 1.23 2.65 2.68 1.80 1.36 2.17 1.94 1.78 1.25

N(0, 1)-EGARCH(1,1) Mixture of Normals Trending σ

T 100 300 1000 5000 100 300 1000 5000 100 300 1000 5000

GSMg
2 8.45 19.67 32.22 45.52 0.86 0.90 0.98 1.24 2.63 2.87 2.88 3.05

GSM∆
2 1.65 0.66 0.46 0.55 2.64 1.40 1.32 1.40 1.72 1.20 1.11 1.19

GSM2 4.14 1.84 1.06 0.91 4.98 2.63 1.93 1.73 4.48 2.19 1.84 1.55

Q5 12.15 30.15 49.57 67.07 0.93 0.79 1.09 1.03 3.49 3.99 4.34 4.86
Q10 12.15 36.45 59.61 79.79 0.88 0.94 0.97 1.02 4.28 5.57 6.22 6.93
Q20 8.40 35.13 63.07 84.86 0.83 0.90 1.04 0.99 4.38 7.90 9.62 10.18
EL 1.98 1.93 1.38 1.17 2.58 2.28 1.83 1.55 2.56 2.31 1.87 1.26



Table 2
Rejection rates under the null hypothesis at 5% nominal level

Rejection probabilities in percentages of tests with nominal levels of 5% against five different data generating
processes under the null hypothesis:

(1) A standard normal process yt ∼ N(0, 1);
(2) A GARCH(1,1) process with i.i.d. standard normal innovations,

yt = σtεt , εt ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 ;

(3) A GARCH(1,1) process with i.i.d innovations following a Student’s t with 5 degrees of freedom;
(4) An EGARCH(1,1) process with i.i.d standard normal innovations

yt = σtεt , εt ∼ N(0, 1) , log σ2
t = 0.001 + 0.5|εt| − 0.2εt + 0.95σ2

t−1 ;

(5) An mixture of two normals N(0, 1/2) and N(0, 1) with mixing probability 1/2.
(6) An heterogeneous normal with trending mean: yt ∼ N(0, t).

The tests GSMg, GSM∆, and GSM are computed assuming zero fourth order cumulants, estimating the
scaling coefficients, and estimating scaling coefficients and asymptotic covariance matrix, respectively; Qk is
the Box and Pierce test with k lags; EL is the Escanciano and Lobato test. All size simulations based on
50,000 replications.

N(0, 1) N(0, 1)-GARCH(1,1) t5-GARCH(1,1)

T 100 300 1000 5000 100 300 1000 5000 100 300 1000 5000

GSMg
2 4.77 4.71 4.74 5.11 5.63 7.06 7.02 7.53 6.56 8.94 11.58 13.34

GSM∆
2 9.21 6.32 5.53 5.43 8.29 6.53 5.48 5.61 7.46 5.85 5.49 5.14

GSM2 13.32 8.37 7.12 6.33 12.39 8.84 7.11 6.30 11.26 7.64 7.01 5.69

Q5 4.12 4.75 4.74 5.01 6.00 7.54 7.69 8.37 6.41 10.71 14.60 17.97
Q10 4.06 4.53 4.64 5.19 5.91 8.11 8.74 9.44 6.00 11.87 16.97 22.87
Q20 3.20 4.29 4.49 5.05 4.93 7.61 9.02 10.46 4.82 11.51 18.13 25.32
EL 7.80 6.70 5.47 5.50 7.66 6.83 5.52 5.39 7.33 5.86 5.56 5.07

N(0, 1)-EGARCH(1,1) Mixture of Normals Trending σ

T 100 300 1000 5000 100 300 1000 5000 100 300 1000 5000

GSMg
2 18.37 33.17 46.74 59.24 4.55 5.05 4.86 5.41 8.74 9.60 10.16 10.42

GSM∆
2 6.22 3.83 3.21 3.97 9.04 6.40 5.77 5.74 7.61 5.90 5.46 5.46

GSM2 10.80 6.43 4.73 4.92 13.06 8.57 7.26 6.69 11.75 7.86 6.74 5.98

Q5 24.32 45.80 64.90 79.30 3.93 4.81 4.67 5.48 11.24 12.31 13.92 14.05
Q10 23.53 51.90 73.62 88.80 3.69 4.45 5.10 5.14 12.05 15.57 17.65 18.31
Q20 16.86 50.37 77.03 92.82 3.15 4.52 4.61 5.31 11.65 19.49 23.98 25.32
EL 6.64 5.65 5.11 4.94 7.92 6.57 5.75 5.44 7.92 6.34 5.54 4.97



Table 3
Size-adjusted power against Gaussian AR(2) processes

Power and relative power against the two-parameter family

yt = α1yt−1 + α2yt−2 + εt , εt ∼ N(0, 1) ,

Simulations are carried out for set of alternatives obtained varying α1 in the interval (−0.50, 0.50)
and α2 in (−0.45, 0.45) in increments of 0.05.

GSMg
2

α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 94.3 76.2 51.6 43.8 62.0 85.7 96.9
0.20 85.1 54.1 23.3 17.2 33.4 64.6 89.6
0.10 69.7 32.8 8.7 4.3 13.2 40.3 74.9
0.00 53.7 18.3 3.2 1.2 4.6 21.3 56.1
−0.10 39.7 11.0 2.7 2.5 5.2 17.1 46.5
−0.20 33.4 11.8 8.0 11.9 18.5 31.6 54.3
−0.30 40.5 27.2 29.2 37.3 48.3 60.8 76.3

Q20 Relative power: (GSMg
2 /Q20) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 84.7 58.8 31.7 19.9 25.7 49.5 77.8

α2

0.30 0.11 0.30 0.63 1.20 1.42 0.73 0.25
0.20 64.4 33.3 12.3 6.8 9.6 26.1 56.2 0.20 0.32 0.62 0.89 1.53 2.50 1.47 0.59
0.10 39.3 15.3 5.0 1.7 3.6 12.1 33.4 0.10 0.77 1.14 0.75 1.49 2.68 2.33 1.24
0.00 21.6 7.3 2.2 1.1 1.7 5.6 17.9 0.00 1.49 1.52 0.48 0.07 1.74 2.82 2.14
−0.10 14.5 5.9 2.8 1.9 2.2 4.2 11.3 −0.10 1.74 0.87 −0.04 0.27 1.32 3.08 3.10
−0.20 16.1 9.9 7.1 6.7 7.2 9.2 14.7 −0.20 1.08 0.19 0.13 0.79 1.57 2.44 2.70
−0.30 28.2 23.3 21.1 19.7 20.5 23.6 28.9 −0.30 0.43 0.17 0.38 0.89 1.36 1.57 1.64

LB Relative power: (GSMg
2 /LB) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 82.7 55.5 29.3 17.7 23.0 45.5 75.1

α2

0.30 0.14 0.37 0.76 1.47 1.70 0.88 0.29
0.20 60.9 30.5 11.2 6.1 8.6 24.0 52.8 0.20 0.40 0.78 1.07 1.83 2.87 1.69 0.70
0.10 35.5 13.7 4.4 1.6 3.3 10.9 30.6 0.10 0.96 1.39 0.95 1.65 3.04 2.69 1.45
0.00 19.1 6.5 2.1 1.0 1.6 5.0 15.9 0.00 1.81 1.80 0.52 0.18 1.80 3.25 2.53
−0.10 12.8 5.3 2.5 1.8 2.2 3.8 10.0 −0.10 2.11 1.10 0.05 0.38 1.39 3.55 3.66
−0.20 14.3 8.9 6.4 6.3 6.5 8.3 12.8 −0.20 1.34 0.32 0.25 0.91 1.83 2.79 3.24
−0.30 25.1 20.8 18.7 17.8 18.7 21.3 25.9 −0.30 0.61 0.31 0.56 1.10 1.59 1.85 1.95

EL Relative power: (GSMg
2 /EL) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 94.8 80.1 57.7 42.6 51.4 73.7 91.9

α2

0.30 0.00 −0.05 −0.11 0.03 0.21 0.16 0.06
0.20 82.4 54.0 26.8 15.1 21.7 45.3 74.4 0.20 0.03 0.00 −0.13 0.14 0.54 0.42 0.20
0.10 59.2 27.5 8.7 3.3 6.5 20.8 50.8 0.10 0.18 0.19 0.00 0.32 1.04 0.94 0.47
0.00 39.8 12.8 2.8 1.3 2.0 8.7 32.1 0.00 0.35 0.44 0.13 −0.12 1.25 1.44 0.75
−0.10 29.2 9.8 4.6 3.5 4.1 7.8 23.3 −0.10 0.36 0.13 −0.43 −0.30 0.28 1.19 1.00
−0.20 31.0 20.1 15.7 14.4 15.7 19.7 28.9 −0.20 0.08 −0.41 −0.49 −0.17 0.18 0.61 0.88
−0.30 55.1 50.3 45.1 41.9 43.9 48.7 55.1 −0.30 −0.27 −0.46 −0.35 −0.11 0.10 0.25 0.39
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Table 4
Size-adjusted power against GARCH(1,1)-AR(2) processes

Power and relative power against the two-parameter family

yt = α1yt−1 + α2yt−2 + εt ,

εt = σtzt , z ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 .

Simulations are carried out for set of alternatives obtained varying α1 in the interval (−0.50, 0.50)
and α2 in (−0.45, 0.45) in increments of 0.05.

GSMg
2

α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 92.5 70.7 46.6 40.5 57.4 82.7 96.3
0.20 80.7 48.8 19.9 15.0 32.6 62.5 88.6
0.10 65.1 28.1 7.2 4.2 12.6 36.7 71.0
0.00 46.9 15.3 2.3 1.0 4.3 19.2 52.1
−0.10 34.4 8.7 1.8 2.0 4.7 14.8 41.2
−0.20 27.1 8.4 6.4 9.8 16.3 27.1 50.2
−0.30 30.0 20.9 23.1 32.5 41.9 54.0 70.3

Q20 Relative power: (GS2/Q20) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 83.1 55.2 28.3 17.5 22.9 46.4 74.3

α2

0.30 0.11 0.28 0.64 1.31 1.51 0.78 0.30
0.20 60.4 30.2 11.4 6.4 9.7 24.7 52.8 0.20 0.33 0.62 0.75 1.36 2.34 1.53 0.68
0.10 38.3 14.6 4.6 2.0 3.4 11.5 30.0 0.10 0.70 0.93 0.55 1.10 2.70 2.20 1.37
0.00 19.8 6.2 2.2 1.1 2.1 5.1 17.0 0.00 1.37 1.46 0.06 −0.02 1.03 2.73 2.06
−0.10 12.3 4.6 2.6 1.9 2.3 4.2 10.9 −0.10 1.80 0.89 −0.29 0.04 1.08 2.50 2.76
−0.20 14.0 8.8 6.3 5.8 5.8 8.4 13.1 −0.20 0.94 −0.04 0.01 0.69 1.81 2.21 2.83
−0.30 25.6 20.5 18.0 17.4 17.6 20.0 25.5 −0.30 0.17 0.02 0.28 0.87 1.39 1.70 1.75

LB Relative power: (GSMg
2 /LB) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 81.0 52.0 26.7 15.8 21.2 43.5 72.0

α2

0.30 0.14 0.36 0.74 1.56 1.70 0.90 0.34
0.20 57.2 27.7 10.6 5.8 9.1 22.9 49.6 0.20 0.41 0.76 0.88 1.59 2.56 1.73 0.79
0.10 35.5 13.4 4.4 1.9 3.3 10.3 27.8 0.10 0.83 1.10 0.63 1.24 2.81 2.58 1.56
0.00 18.0 5.7 2.2 1.0 2.1 4.9 15.3 0.00 1.61 1.70 0.08 0.02 1.01 2.93 2.40
−0.10 11.5 4.4 2.5 2.0 2.3 4.0 9.8 −0.10 2.00 1.00 −0.28 0.02 1.10 2.69 3.20
−0.20 12.4 8.1 6.0 5.5 5.4 7.7 12.2 −0.20 1.18 0.04 0.07 0.77 2.00 2.54 3.11
−0.30 23.2 18.8 16.5 16.2 16.0 18.4 23.1 −0.30 0.29 0.11 0.40 1.01 1.62 1.94 2.04

EL Relative power: (GSMg
2 /EL) - 1

α1 α1

0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30 0.30 0.20 0.10 0.00 −0.10 −0.20 −0.30

α2

0.30 94.0 78.2 54.6 40.8 48.7 72.3 90.6

α2

0.30 −0.02 −0.10 −0.15 −0.01 0.18 0.14 0.06
0.20 79.7 51.8 25.5 14.4 21.6 44.2 73.1 0.20 0.01 −0.06 −0.22 0.05 0.51 0.41 0.21
0.10 57.8 25.2 7.6 3.6 6.7 19.4 47.6 0.10 0.13 0.11 −0.05 0.16 0.90 0.90 0.49
0.00 37.1 11.5 2.3 1.4 1.8 8.5 29.0 0.00 0.26 0.34 0.00 −0.24 1.34 1.26 0.80
−0.10 26.2 8.3 3.5 2.9 3.6 6.4 21.4 −0.10 0.31 0.05 −0.47 −0.30 0.33 1.30 0.92
−0.20 28.1 17.4 14.1 11.9 13.5 17.6 27.0 −0.20 −0.04 −0.52 −0.55 −0.18 0.21 0.54 0.86
−0.30 50.0 45.5 41.4 38.6 39.7 45.3 51.5 −0.30 −0.40 −0.54 −0.44 −0.16 0.05 0.19 0.37
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Table 5
Size for higher order wavelet decompositions

Rejection probabilities of tests with nominal levels of 5% against the following models for the null

(1) A standard normal process yt ∼ N(0, 1);
(2) A Student-t process yt with 3 degrees of freedom;
(3) A GARCH(1,1) process with i.i.d. standard normal innovations,

yt = σtεt , εt ∼ N(0, 1) , σ2
t = 0.001 + 0.05y2

t−1 + 0.90σ2
t−1 ;

All simulations based on 10,000 replications.

model N GSM2 GSM3 GSM4 GSM5 GSM6

norm 100 0.0518 0.0499 0.0563 0.0642 0.0787
t3 100 0.0385 0.0388 0.0428 0.0503 0.0664
garch 100 0.0566 0.0603 0.0667 0.0727 0.0896

norm 300 0.0468 0.0503 0.0547 0.0574 0.0650
t3 300 0.0425 0.0431 0.0433 0.0496 0.0565
garch 300 0.0644 0.0673 0.0705 0.0729 0.0831

norm 1000 0.0493 0.0500 0.0506 0.0518 0.0543
t3 1000 0.0486 0.0485 0.0493 0.0503 0.0532
garch 1000 0.0736 0.0755 0.0797 0.0798 0.0814



Table 6
Power for higher order wavelet decompositions

Rejection probabilities of tests with nominal levels of 5% against the restricted autoregressive model rar(p)

yt = 0.1yt−p + εt , for p = 1, 2, 4 .

All simulations based on 10,000 replications.

model N GSMg
2 GSMg

3 GSMg
4 GSMg

5 GSMg
6

rar(1) 100 0.1009 0.0673 0.0496 0.0408 0.0479
rar(2) 100 0.0912 0.0769 0.0614 0.0506 0.0553
rar(4) 100 0.0404 0.0645 0.0663 0.0602 0.0641
rar(5) 100 0.0389 0.0568 0.0591 0.0558 0.0632

rar(1) 300 0.2966 0.2226 0.1716 0.1359 0.1079
rar(2) 300 0.2376 0.2004 0.1643 0.1296 0.1049
rar(4) 300 0.0395 0.1308 0.1192 0.0971 0.0826

rar(1) 1000 0.8152 0.7504 0.6931 0.6338 0.5752
rar(2) 1000 0.7069 0.6558 0.5866 0.5292 0.4743
rar(4) 1000 0.0399 0.4084 0.3807 0.3280 0.2838



Appendix A. Proofs

Recall that the process {zm,t} is defined as the cross-product component of the square of each

wavelet detail

zm,t :=

L−1∑
i=0

L∑
j>i

hm,ihm,jyt−iyt−j

and that when there is no risk of confusion we omit the index m.

Proof of Proposition 2. Recall that on a measure space {X,µ}, for any f ∈ Lp(Ω) and g ∈ Lq(Ω),

the generalized Hölder inequality holds (see, for example, Reed and Simon, 1972, page 82):

(19) ‖fg‖r ≤ ‖f‖p‖g‖q, with p−1 + q−1 = r−1 ,

in particular, if p = q, ‖fg‖p/2 ≤ ‖f‖p‖g‖p. For the remainder of this proof let E[·] = E[·|F t+mt−m (ε)].

The following computation follows almost exactly the proof of Theorem 17.9 in Davidson (1995).

Using the triangle inequality and the generalized Hölder inequality (19):

‖xtyt − Extyt‖p/2
= ‖(xtyt − xtEyt) + (xtEyt − ExtEyt)− E(xt − Ext)(yt − Eyt)‖p/2
≤ ‖xt(yt − Eyt)‖p/2 + ‖(xt − Ext)Eyt‖p/2 + ‖E(xt − Ext)(yt − Eyt)‖p/2
≤ ‖xt‖p‖yt − Eyt‖p + ‖xt − Ext‖p‖Eyt‖p + ‖xt − Ext‖p‖yt − Eyt‖p
≤ ‖xt‖pdyt νym + ‖yt‖pdxt νxm + dxt ν

x
md

y
t ν
y
m ≤ dtνm,

where dt = max(‖xt‖pdyt , ‖yt‖pdxt , dxt d
y
t ) and νm = O(m−minφx,φy). �

Proof of Theorem 4. Let {εt} be the driving mixing process of {yt}. Since the NED property is

preserved under linear combinations (Davidson, 1995, Theorem 17.8, page 267), {wm,t} is L2-NED

on εt. It follows that {w2
m,t} is L1-NED on εt (Davidson, 1995, Theorem 17.9, page 268). Recall

that

zm,t = w2
m,t −

Lm∑
i=1

h2
m,iy

2
t−i .

Again, since the linear combination of NED processes is a NED process, {zm,t} is L1-NED. Notice

that Êm,T − 2−m can be written in terms of zt and yt:

Êm,T −
1

2m
=

2
∑

t zm,t∑
t y

2
t

,

indeed

Êm,T =

∥∥wTm∥∥∥∥yTt ∥∥ =

∑T
t=1

(∑Lm
i=0 hm,iyt

)2

∑T
t=1 y

2
t

(20)

=

∑T
t=1

(∑Lm
i=0 h

2
m,iy

2
t−i + 2

∑Lm−1
i=0

∑Lm
j>i hm,ihm,jyt−iyt−j

)
∑T

t=1 y
2
t

(21)

=

∑Lm
i=0 h

2
m,i

∑T
t=1 y

2
t−i∑T

t=1 y
2
t

+
2
∑T

t=1 zm,t∑T
t=1 y

2
t
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=

Lm∑
i=0

h2
m,i +

2
∑T

t=1 zm,t∑T
t=1 y

2
t

=
1

2m
+

2
∑T

t=1 zm,t∑T
t=1 y

2
t

(22)

Step (22) uses the fact that filtering is cyclic, therefore the sum
∑T

t=1 yt−i does not depend on i and

is the same as the denominator
∑T

t=1 yt. The last equality holds because the norm of a convolution

is the product of the norms. Since hm,t is the cascade filter obtained by convolution of m filters

with norm 1/2, the result holds. Now, the Law of Large Numbers for NED processes (see Davidson,

1995, , page 302) together with Slutsky’s Theorem imply

2
∑T

t=1 zm,t∑T
t=1 y

2
t

p−→ 0

and the theorem is proven. �

In the stationary case, Theorem 4 follows easily from the Law of Large Numbers for NED

processes (see Davidson, 1995, , page 302) and Slutsky’s Theorem. Indeed,∑n
t=1w

2
m,n∑n

t=1 y
2
t

p−→ 2−mσ2

σ2
=

1

2m
,

as Ew2
m,n = 2−mσ2 for all m and n.

Lemma 15. Let {yt} be a stochastic sequence with zero means with finite joint fourth cumulants,

i.e.

E[yt−iyt−jyt−kyt−l] <∞ ,

for all i, j, k, and l such that 0 ≤ i < l < L and 0 ≤ k < l < L. Then,

var(zt) =

L−1∑
i=0

L∑
j>i

L−1∑
k=0

L∑
l>k

hihjhkhlE(yt−iyt−jyt−kyt−l)

and

cov(zt, zt−s) =
L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k)

Proof. The proof relies on a direct computation. First, we compute the variance:

var(zt) = var

L−1∑
i=0

L∑
j>i

hihj yt−iyt−j


= cov

L−1∑
i=0

L∑
j>i

hihj yt−iyt−j ,

L−1∑
k=0

L∑
l>k

hkhl yt−kyt−l


=

L−1∑
i=0

L∑
j>i

L−1∑
k=0

L∑
l>k

hihjhkhlCov(yt−iyt−j , yt−kyt−l)

=
L−1∑
i=0

L∑
j>i

L−1∑
k=0

L∑
l>k

hihjhkhlE(yt−iyt−jyt−kyt−l) ,(23)

where at step (23) we used the fact that yt has zero mean.
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The autocovariances of {zt} are computed similarly. Let hl = 0 for all l > L, then

cov(zt, zt−s) = cov(
L−1∑
i=0

L∑
j>i

hihj yt−iyt−j ,
L−1∑
l=0

L∑
k>l

hl−shk−s yt−s−lyt−s−k)

=

L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sCov(yt−iyt−j , yt−s−lyt−s−k)

=

L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k) .(24)

�

Proof of Proposition 8. Since {zm,t} is linear combination of processes of the form {ytyt−i} and since

the NED property is preserved under linear combinations, it follows that under under Assumption

(B2), {zm,t} is L2-NED of size −1/2 on εt.

To see that Assumption B1 implies condition (a) of Central Limit Theorem for NED processes

(De Jong, 1997, page 358, Corollary 1) recall that from lemma 15

var(zm,t) =

Lm∑
i=0

Lm∑
j>1

Lm∑
k=0

Lm∑
l>1

hihjhkhlE(yt−iyt−jyt−kyt−l) .

Then, ∥∥∥∥∥ yt−iyt−jyt−kyt−l∑Lm
i=0

∑Lm
j>1

∑Lm
k=0

∑Lm
l>1 hihjhkhlE(yt−iyt−jyt−kyt−l)

∥∥∥∥∥
p

∼

∥∥∥∥∥
∑Lm

i=0

∑Lm
j>1

∑Lm
k=0

∑Lm
l>1 hihjhkhlyt−iyt−jyt−kyt−l∑Lm

i=0

∑Lm
j>1

∑Lm
k=0

∑Lm
l>1 hihjhkhlE(yt−iyt−jyt−kyt−l)

∥∥∥∥∥
p

=

∥∥∥∥∥ z2
t,m

var(zm,t)

∥∥∥∥∥
p

=

∥∥∥∥ zt,mσm,t

∥∥∥∥
2p

,

which implies that zm,t/σm,t is Lr-bounded for r = 2p > 2.

Thus, zm,t satisfies the conditions of Central Limit Theorem for NED processes (De Jong, 1997,

page 358, Corollary 1) and
T∑
t=1

zm,t/sT (z)
d−→ N(0, 1) .

Therefore, ∑
t y

2
t

2sT (z)

(
Êm,T −

1

2m

)
d−→ N(0, 1)√

Tσ4
T

4s2
T (z)

(
Êm,T −

1

2m

)
d−→ N(0, 1) ,where σ2

T = T−1
T∑
t=1

Ey2
t .

�

Proof of Corollary 10. In order to prove Corollary 10, we require the following lemma.

Lemma 16. Let {yt} be a stochastic sequence with zero means, identical variances σt = σ, and van-

ishing fourth order joint cumulants. Let {hl}L−1
0 be an L-dimensional vector. Then the stochastic
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sequence zt is has variance

(25) var(zt) = σ4
L−1∑
i=0

L∑
j>i

(hihj)
2 ,

and autocovariances

(26) cov(zt, zt−s) =

σ4
∑imax

i=imin

∑jmax

j>i hihjhi−shj−s , if s ≤ L− 1

0 , otherwise

where

imin = max(0, s) , imax = L− 1 + min(0, s) , jmax = L+ min(0, s) .

Proof. When fourth cumulants are zero, the fourth moment κrstu of yt can be expressed in terms

of the second moments κrs = σ2. Such decomposition is valid whenever the fourth cumulant κr,s,t,u

is zero. Indeed (see for example McCullagh (1987))

κrstu = κr,s,t,u + κr,s,tκu[4] + κr,sκt,u[3] + κr,sκtκu

= κr,s,t,u + κr,sκt,u[3]

where the the bracket notation [n] indicates the number of terms in implicit summation over distinct

partitions having the same block sizes. The second equality follows since κs = 0 as yt is a zero mean

sequence. Continuing form (23), since yt is independently distributed and since i 6= j and k 6= l

(from the second and fourth summations), the only non vanishing contributions in (23) correspond

to the two possibilities (i = k, j = l) and (i = l, j = k). The second scenario never arises. Indeed,

when i = l and j = k, using l > k (from the fourth summation)

i = l > k = j =⇒ i > j,

which contradicts the condition j > i (from the second summation). Let δij be equal to 1 whenever

i = j and 0 otherwise. Thus,

L−1∑
i=0

L∑
j>i

L−1∑
k=0

L∑
l>k

hihjhkhlE(yt−iyt−jyt−kyt−l)(δikδjl + δilδjk)

=
L−1∑
i=0

L∑
j>i

h2
ih

2
jE(y2

t−iy
2
t−j)

=
L−1∑
i=0

L∑
j>i

h2
ih

2
jE(y2

t−i)E(y2
t−j)

= σ4
L−1∑
i=0

L∑
j>i

h2
ih

2
j .

A very similar computation yields the autocorrelation function γs:

γm(s) = Cov(
L−1∑
i=0

L∑
j>i

hihj yt−iyt−j ,

L−1∑
l=0

L∑
k>l

hl−shk−s yt−s−lyt−s−k)(27)
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=

L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sCov(yt−iyt−j , yt−s−lyt−s−k)

=

L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k)

=
L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k)(δi,s+lδj,s+k + δi,s+kδj,s+l)

=
L−1∑
i=0

L∑
j>i

L−1∑
l=0

L∑
k>l

hihjhl−shk−sE(yt−iyt−jyt−s−lyt−s−k)δi,s+lδj,s+k(28)

=

imax∑
i=imin

jmax∑
j>i

hihjhi−shl−sE(y2
t−i)E(y2

t−j)

= σ4
imax∑
i=imin

jmax∑
j>i

hihjhi−shl−s .

where

imin = max(0, s) , imax = L− 1 + min(0, s) , jmax = L+ min(0, s) .

At equality (28) we used the fact that the contribution of δi,s+kδj,s+l is zero. The argument is

the same as for the analogous contribution to γm(0).

Notice that the autocovariance γ(s) is zero when imin > imax. For s > 0, this condition holds

when

max(0, s) > L− 1 + min(0, s)

s > L− 1 .

In particular, the sequence zt is a (L − 1)-dependent sequence (i.e. zt is independent of zt−l for

l > L− 1). �

Using Equation 21 and the fact that Êm,T
p−→ 1

2m (see Proposition 8) we can write

√
T

(
Êm,T −

1

2m

)
=
√
T

2
∑T

t=1

∑2m−2
i=0

∑2m−1
j>i hihjyt−iyt−j∑T

t=1 y
2
t

=
√
T

∑T
t=1 2zt∑T
t=1 y

2
t

=

√
T (2z̄t)

1
T

∑T
t=1 y

2
t

d−→
N
(

0, 4
∑L−1

j=−L+1 γ(j)
)

σ2
∼
N
(
0, σ4an

)
σ2

∼
√
anN (0, 1) .(29)

In step (29) we used the Continuous Mapping Theorem and the Central Limit Theorem for station-

ary time series (see Hamilton, 1994, Theorem 7.11). Independence of am from σ follows directly

from Equations (25) and (26). �
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Proof of Theorem 13. Consider the vector (GS 1,T , . . . ,GSN,T ).
GS 1,T

...

GSN,T

 =


√

T
a1

(
Ê1,T − 1

21

)
...√

T
aN

(
ÊN,T − 1

2N

)
 =

√
T∑T

t=1 y
2
t


1√
am

∑T
t=1 z1,t

...
1√
aN

∑T
t=1 zN,t

 =

√
T

1
T

∑T
t=1 y

2
t


1√
a1
z̄1,T

...
1√
aN
z̄N,T


Let q be the column N -vector with coordinates 1√

ai
. Let diag(v) be the square matrix with v on

the main diagonal and zero everywhere else. By definition diag(q)
(∑

s∈Z Γ (s)
)

diag(q) = σ2A.

Indeed,
1√
a1

0 · · · 0

0 1√
a2
· · · 0

...
...

. . .
...

0 0 · · · 1√
aN



σ4a1 σ4a12 · · · σ4a1N

σ4a21 σ4a2 · · · σ4a2N

...
...

. . .
...

σ4aN1 σ4aN2 · · · σ4aN




1√
a1

0 · · · 0

0 1√
a2
· · · 0

...
...

. . .
...

0 0 · · · 1√
aN
e

 = σ4A

The joint asymptotic distribution of the vector of multi-scale energy ratios is
GS 1,T

...

GSN,T

 d−→ 1

σ2
N

0, diag(q)

 +∞∑
j=−∞

Γ (j)

 diag(q)

 ∼ N (0, A) .

�
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