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Abstract

We use noncausal autoregressions to examine the persistence properties of quarterly

U.S. consumer price inflation from 1970:1—2012:2. These nonlinear models capture

the autocorrelation structure of the inflation series as accurately as their conventional

causal counterparts, but they allow for persistence to depend on the size and sign of

shocks to inflation as well as the inflation rate. Inflation persistence has decreased

since the early 1980’s, after which persistence is also greater following small and

negative shocks than large and positive ones. At high levels of inflation, shocks are

absorbed more slowly before the early 1980’s and faster thereafter compared to low

levels of inflation.
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1 Introduction

The persistence of inflation, i.e., the speed at which a shock to inflation is absorbed,

contains important information for the conduct of monetary policy. In particular,

the more persistent inflation is, the stronger the policy measures required to bring it

back to the target level. As recently pointed out by Fuhrer (2010), a central challenge

in inflation research is the mapping of observed or reduced-form persistence into the

underlying economic structures that produce it. Part of this challenge comes from

the fact that it is not even clear how reduced-form inflation persistence should be

measured. A natural measure of persistence is the impulse response function implied

by the inflation process, which shows how quickly the effect of a shock to inflation

vanishes. Following the previous literature, Fuhrer (2010) emphasizes persistence

measures based on autocorrelation, which are indeed reasonable if inflation dynam-

ics are well described by a conventional (causal) autoregressive (AR) process, as is

typically assumed. However, if this not the case, there is, in general, no one-for-one

correspondence between the autocorrelation function and the (generalized) impulse

response function.

In this paper, we consider the measurement of inflation persistence based on non-

causal AR models previously shown to fit U.S. consumer price inflation well by Lanne

and Saikkonen (2011), and Lanne, Luoma, and Luoto (2012). These models explicitly

allow for dependence on (expected) future inflation, and, therefore, naturally facil-

itate gauging the relative importance of lagged inflation and future expectations in

the determination of inflation. As the aforementioned authors point out, the typically

observed strong autocorrelation does not necessarily translate into high persistence

in the sense that inflation would strongly depend on past inflation, but it may rather

be generated by agents’inflation expectations. With U.S. inflation, they indeed find

expectations the prominent source of autocorrelation. However, they do not explicitly

examine the persistence properties of inflation implied by the estimated noncausal AR

models. As discussed in Section 2 below, while a causal AR process yields exactly

the same autocorrelation function as its noncausal counterpart, the latter is nonlinear

and, hence, allows for richer dynamics and, in particular, time-varying persistence.
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Hence, despite its simplicity, the noncausal AR model facilitates examining changes

in inflation persistence without having to pre-specify or test for any break dates, as

has often been done in the previous literature on inflation persistence. In addition,

it can yield information on the sources of potential changes in persistence because,

unlike in the conventional causal AR model, the effect of a shock can depend on its

sign, size and the level of inflation at the time when the shock occurs.

There are a number of theoretical economic models that imply asymmetries in

inflation persistence. First, menu cost models may imply lower (higher) persistence

following a large (small) or positive (negative) shock to inflation. As shown by Karadi

and Reiff (2011), it is only after a large shock that a large number of firms have an

incentive to change prices, leading to a quick response, while after small shocks prices

are sticky as only few firms adjust their prices. Ball and Mankiw (1994), in turn, argue

that after a positive inflation shock, firms have an incentive to increase their prices to

keep their relative prices intact, while following a negative shock, they can save their

menu costs by not changing their prices and letting the trend inflation reduce their

relative prices. Second, if monetary policy reactions are asymmetric, persistence may

depend on the sign of the shock to inflation. In particular, policy makers may be

more concerned about negative than positive output gaps, indicating higher inflation

persistence after a positive than negative inflationary shock (see, Gerlach (2000) and

the references therein). Third, inflation persistence may also depend on the how far

the inflation rate is from the target of the central bank. According to the opportunistic

approach to disinflation put forth by Orphanides and Wilcox (2002) and Aksoy et al.

(2006), the central bank reacts more aggressively when inflation is far from the target,

indicating that at very high (or low) levels of inflation, shocks to inflation are absorbed

more rapidly.

There seem to be very few previous empirical studies on inflation dynamics em-

ploying univariate nonlinear models, and, to the best of our knowledge, the persistence

of U.S. inflation is systematically studied based on such a model only in the recent

article by Nobay et al. (2010).1 These authors fit an exponential smooth-transition

1There are, however, a number of attempts to examine the importance of nonlinearities for

inflation persistence. First, Tsong and Lee (2011), and Tillmann and Wolters (2012) have applied
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AR (ESTAR) model to quarterly U.S. PCE inflation from 1947:1 to 2004:4, and find

that mean reversion is the faster the more the inflation rate deviates from equilibrium,

and that large shocks are less persistent than small shocks.

While the ESTAR model can be motivated by results in recent monetary theory,

it is also, to some extent, driven by these theories, which may be restrictive from

the viewpoint of examining inflation persistence. In particular, the transition func-

tion of the ESTAR model is symmetric around equilibrium inflation, and hence, the

persistence properties of positive and negative shocks of the same size cannot, by con-

struction, be different. In the same vein, while the ESTAR model may imply different

persistence properties dependent on the distance of the current inflation rate from the

equilibrium, the differences are independent of whether the deviation is downward or

upward. Neither of these restrictions is present in the noncausal AR model. More-

over, although linearity tests reject against the alternative of the ESTAR model, this

may not be the true process because these tests have nontrivial power also against

other nonlinear models. Specifically, Lof (2013) shows that STAR models may easily

get mixed up with noncausal AR models considered in this paper. The noncausal

AR model is also more general than the ESTAR model in at least two further ways.

First, it has exactly the same autocorrelation function as its causal counterpart so

that it captures the autocorrelation structure of inflation equally accurately. Second,

as discussed by Lanne and Saikkonen (2013), it is capable of capturing GARCH ef-

fects prevalent in the inflation series, while Nobay et al. (2010) had to augment their

the quantile-regression approach to causal AR models of inflation, which also facilitates studying

whether positive and negative as well as large and small shocks have different effects. The former

authors conclude that large negative shocks are absorbed more quickly than positive shocks in

twelve OECD countries, while the latter authors find a break in the persistence of the postwar U.S.

inflation rates such that since the 1980’s inflation has become less persistent at all quantiles. Second,

structural breaks have been introduced into causal AR models for inflation. Levin and Piger (2003),

and Cecchetti and Debelle (2006) have shown that if breaks in the intercept of a causal AR model

are neglected, inflation may spuriously apper too persistent. Third, Kumar and Okimoto (2007)

and Hassler and Meller (2011) estimate fractionally integrated AR models for U.S. consumer price

inflation. The former authors find much lower persistence after 1982, while according to Hassler and

Meller (2011) the break in the early 1980’s is not statistically significant.
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ESTAR model with a separate GARCH component to get an adequate description of

inflation dynamics.

In Section 4, we estimate a noncausal AR model for quarterly U.S. consumer price

inflation from 1970:1 to 2012:2, and compute generalized impulse response functions

based on it. In addition to the entire sample period, we report results separately for

two subsample periods, 1970:1—1982:4 and 1983:1—2012:2. In accordance with much

of the previous literature (see Fuhrer (2010) and the references therein), we find a

clear reduction in inflation persistence since the early 1980’s. Moreover, large and

negative shocks appear more persistent than small and positive ones in the post-

1982 period, while no such clear nonlinear effects prevail in the pre-1983 period.

Before 1983, shocks are absorbed more slowly when the inflation rate is high, whereas

the case seems to be the opposite in the more recent subsample period, potentially

suggesting that monetary policy aimed at keeping inflation under control has become

more aggressive.

The plan of the rest of the paper is as follows. In Section 2, we describe the

noncausal AR model and discuss model selection. Section 3 deals with the computa-

tion of the generalized impulse response function. Empirical results are reported in

Section 4. Finally, Section 5 concludes.

2 Noncausal Autoregression

The starting point of our analysis is the noncausal AR model of Lanne and Saikkonen

(2011) that can be described as follows.2 Consider a stochastic process yt (t = 0, ±1,
±2, ...) generated by

φ (B)ϕ
(
B−1

)
yt = εt, (1)

where φ (B) = 1 − φ1B − · · · − φrBr, ϕ (B−1) = 1 − ϕ1B−1 − · · · − ϕsB−s, εt is a
sequence of independent, identically distributed (continuous) random variables with

2An alternative formulation is proposed by Breidt et al. (1991). However, as Lanne and Saikko-

nen (2011) point out, their model has the advantages that it is straightforward to test for the

specified number of leads and lags and inference on the autoregressive parameters is asymptotically

independent of inference on the parameters of the error distribution.
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mean zero and variance σ2 or, briefly, εt ∼ i.i.d. (0, σ2), and B is the usual backward

shift operator, i.e., Bkyt = yt−k (k = 0,±1, ...). The polynomials ϕ (z) and φ (z) are
assumed to have their zeros outside the unit circle so that

φ (z) 6= 0 for |z| ≤ 1 and ϕ (z) 6= 0 for |z| ≤ 1. (2)

We use the abbreviation AR(r, s) for the model defined by (1). If ϕ1 = · · · = ϕs = 0,

model (1) reduces to the conventional causal AR(r, 0) model with yt depending on

its past but not future values. The more interesting cases arise, when this restriction

does not hold. If φ1 = · · · = φr = 0, we have the purely noncausal AR(0, s) model

with dependence on future values only. In the mixed AR(r, s) case where neither

restriction holds, yt depends on its past as well as future values.

To gain further insight, let us write model (1) as

yt = φ1yt−1 + · · ·+ φryt−r +
∞∑
j=0

βjEt(εt+j), (3)

where the conditional expectation is taken with respect to past and current values of

the process (see Eq. (6) in Lanne and Saikkonen (2011)). Unlike in the causal AR

model, current and future errors are predictable by the history of the process, and,

thus, the last term in (3), in general, differs from zero. Hence, if yt is noncausal, its

dynamics are at least in part driven by expected future errors.

A well-known feature of noncausal autoregressions is that a non-Gaussian error

term is required to achieve identification. Therefore, we assume that εt in (1) is non-

Gaussian and its distribution has a (Lebesgue) density fσ (x;ω) = σ−1f (σ−1x;ω)

which depends on the parameter vector ω (d× 1) in addition to the scale parameter
σ already introduced. The function f (x;ω) is assumed to satisfy the regularity

conditions stated in Andrews et al. (2006), and Lanne and Saikkonen (2011). These

conditions imply that f (x;ω) is twice continuously differentiable with respect to

(x, ω), non-Gaussian, and positive for all x ∈ R and all permissible values of ω.

Following, Lanne and Saikkonen (2011), and Lanne, Luoma, and Luoto (2012), we

use Student’s t distribution as the error distribution for the U.S. inflation in Section

4. There has recently been increasing interest in non-Gaussian distributions in the
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context of macroeconomic time series; for instance, Chib and Ramamurthy (2011)

and Cúrdia et al. (2012) have considered macroeconomic models with t-distributed

errors.

Lanne and Saikkonen (2011) showed how model (1) can be consistently estimated

by the method of maximum likelihood (ML). They also showed that the (local) ML

estimator is asymptotically normally distributed, and a consistent estimator of the

limiting covariance matrix is obtained in the usual way from the standardized Hessian

of the log-likelihood function. Thus, standard errors of estimators and conventional

Wald test statistics with an asymptotic χ2-distribution under the null hypothesis can

be computed as usual.

Once noncausality is allowed for, selecting the correct specification among the

different AR(r,s) models adequately capturing the autocorrelation in the series of

interest becomes an issue. Breidt et al. (1991) suggested a model selection procedure

based on maximizing the likelihood function, where all purely noncausal, causal and

mixed models of a given order p are estimated, and the model yielding the greatest

value of the likelihood function is selected. The order p is first selected by finding

a causal Gaussian AR model exhibiting serially uncorrelated errors. The simulation

results of Lanne and Saikkonen (2011) indicate that this procedure works very well in

small samples. Nevertheless, they recommend augmenting it with diagnostic checks

concerning remaining autocorrelation in the residuals and their squares as well as the

fit of the proposed error distribution. As pointed out in the Introduction, the correctly

specified noncausal AR model is capable of capturing conditional heteroskedasticity.

Hence, if the true model is noncausal, the residuals of a fitted causal or misspecified

noncausal AR model tend to appear heteroskedastic, indicating that autocorrelation

of the squared residuals is likely to be useful in detecting misspecification.3

3In Section 4, we use conventional portmanteau tests and quantile-quantile (Q-Q) plots as diag-

nostic checks. It should, however, be noticed that, when the orders of the model are misspecified,

the errors are dependent, and, therefore, the portmanteau tests are not exactly valid as they do not

take the estimation error correctly into account. Nevertheless, p-values of these tests can be seen as

convenient summary measures.
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3 Generalized Impulse Response Function

As pointed out in the Introduction, the impulse response function (IRF) of a process

conveniently summarizes its persistence properties by providing a measure of the

effect of a shock vt occurring at time t on the time series yt after n periods. For a

linear AR model, its computation is straightforward, but with nonlinear noncausal

AR models, a number of complications arise. In particular, the impulse responses can

depend on the size and sign of the shock vt as well as the information used to forecast

future values of yt. For a noncausal AR(r, s) model, this information, typically called

’history’and denoted by ωt−1, consists of the r+s past values of the process, yt−1,...,

yt−(r+s). The generalized impulse response function (GIRF) introduced by Koop et

al. (1996) offers a solution to these complications. For a specific shock δt and history

ωt−1, it is defined as

GIRF (n, δt, ωt−1) = E (yt+n|vt = δt, ωt−1)− E (yt+n|vt = 0, ωt−1) , (4)

for n = 1, 2, . . .. This yields the generalized impulse responses of a shock of size δt

conditional on a given history ωt−1. The GIRF of the causal AR(r, 0) model coin-

cides with its conventional IRF. For the noncausal AR(r, s) model with s > 0, the

conditional expectations cannot be computed in closed form or using the simulation

method suggested by Koop et al. (1996) and commonly employed for computing fore-

casts from nonlinear models. However, relevant simulation-based forecasting methods

are provided by Lanne, Luoto, and Saikkonen (2012), and Lanne, Luoma, and Luoto

(2012), the former of which is employed in Section 3.

As discussed by Koop et al. (1996), the GIRF can be computed with several

alternative assumptions, depending on the interests of the researcher. For instance,

the shock δt can be drawn from some distribution, in which case, for a fixed history

ωt−1, GIRF becomes a random variable in terms of the shocks. Alternatively, if the

shock is fixed and the histories are drawn from, say, the set of observed histories,

we get a random variable in terms of the history. In Section 4, we will compute

the typical GIRF for each quarter by fixing the history and the shock to the r+s

preceding observed inflation rates and the one-step forecast error at each data point,
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respectively. The latter measures the part of yt that is unpredictable by past inflation,

and, hence, it can be interpreted as the most typical shock at each time point. The

residuals of the estimated model are often used to measure shocks (see, e.g., Pesaran

and Potter (1997)), but because the residuals of the noncausal AR model depend on

future values of yt, they are not unpredictable, and thus not useful proxies of the

shocks.

The simplest case where the properties of the GIRF of noncausal AR models can

be studied, is the AR(0,1) model where the relevant history only depends on one

past value. Our experimentation with this model indicates that its GIRF indeed

can strongly depend on both its history and the size of the shock, while the effect

of the sign of the shock is minor. Comparison with the IRF of the corresponding

conventional causal AR(1,0) model further reveals that depending on the history and

the shock, the AR(0,1) model can exhibit much less or somewhat more persistence

than its causal counterpart.

4 Empirical Results

We model the (demeaned) annualized quarterly inflation rate computed from the

seasonally adjusted U.S. consumer price index (CPI) for all urban consumers from

1970:1 to 2012:2. The source of the data is the FRED database of the Federal Reserve

Bank of St. Louis. We choose this particular inflation series because noncausal AR

models have previously been shown to fit well the same series spanning a somewhat

shorter period by Lanne and Saikkonen (2011), and Lanne, Luoma, and Luoto (2012).

Specifically, both papers present strong evidence in favor of noncausality, and, in

addition, the latter authors find the noncausal AR models clearly superior to their

causal counterparts in forecasting. Following the aforementioned papers, the sample

period only starts in 1970 because it does not seem possible to specify an adequate

AR model for the entire series that is available from 1947.

The inflation series and its autocorrelation function are plotted in Figure 1. The

periods of increased volatility in the 1970’s and early 1980’s as well as the subsequent

period of Great Moderation are clearly discernible. The outlier of the fourth quarter
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of 2008 is noteworthy, and we will later check the robustness of the results with

respect to it. Positive autocorrelation is relatively strong even at high lags, which

has typically been interpreted as a sign of high inflation persistence in the previous

literature.

4.1 Model Selection

The first step in the analysis is model selection considered in this subsection. In other

words, we first find a (potentially noncausal) AR model that adequately captures the

dynamics of the inflation series. Persistence is then studied based on the selected

model in Subsection 4.2.

The estimation results of a number of AR models are presented in Table 1. Fol-

lowing Lanne and Saikkonen (2011), we start out by first specifying a causal Gaussian

AR model that adequately captures the autocorrelation in the inflation series, and

check its residuals for normality. The third-order model (AR(3,0)-N) seems adequate

in terms of both no remaining autocorrelation and conditional heteroskedasticity. The

quantile-quantile (Q-Q) plot of the residuals in the upper panel of Figure 2 indicates

clear inadequacy of the Gaussian model. In particular, there are great discrepancies

at the tails, suggesting the need for a fat-tailed error distribution, such as Student’s

t distribution with a small value of the degree-of-freedom parameter.

The four rightmost columns of Table 1 present the results of the third-order AR

models with a Student-t error distribution. The estimates of the degree-of-freedom

parameter λ of all models are quite small in accordance with the fat tails of the er-

ror distribution suggested by the Q-Q-plot of the causal Gaussian AR model. The

preferred model is the purely noncausal specification (AR(0,3)-t) that maximizes the

log-likelihood function by a sizable margin compared to the other models. All parame-

ters are estimated very accurately. The AR(0,3)-t model seems adequate in that the

errors exhibit no autocorrelation or conditional heteroskedasticity, and according to

the Q-Q-plot in the lower panel of Figure 2, the Student-t distribution indeed seems

to provide quite a good fit, also at the tails. We also checked the adequacy of the

AR(0,3)-t specification by testing the significance of the additional lag and lead in
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AR(1,3)-t and AR(0,4)-t models, respectively. Both turned out insignificant at the

5% level (the p-values are 0.067 and 0.539 for the lag and lead, respectively). Hence,

U.S. consumer price inflation seems to be driven by expectations of future errors (see

Eq. (3)), as also found by Lanne and Saikkonen (2011), and Lanne, Luoma, and

Luoto (2012).

Because the potential outlier of 2008:4 may affect model selection and the diag-

nostic tests, in order to check for robustness, we also considered a series adjusted by

replacing this observation by the average of the adjacent observations. The AR(3,0)-N

model adequately captures the autocorrelation of this series as well, but the McLeod-

Li test rejects at the 10% significance level. The vast reduction in the p-value is not

surprising as it is well known that the presence of an outlier can lead to overrejec-

tion and low power of ARCH tests (see, e.g., van Dijk et al. (1999)). Among the

third-order AR specifications, the AR(0,3)-t model is selected, with even a wider mar-

gin. Moreover, the p-values of the diagnostic tests for the selected model are higher,

attesting to the effect of the aberrant observation on these tests. Nevertheless, the

conclusions drawn above seem robust with respect to the potential outlier, and we

may proceed with the selected AR(0,3)-t model.

Before proceeding to impulse response analysis, we finally check whether the in-

flation series is a unit root process. The value of the conventional augmented Dickey-

Fuller test statistic (based on a regression of the difference of yt on yt−1, two lagged

differences and an intercept, corresponding to the third-order AR model deemed ade-

quate) is —2.91 with a p-value of 0.047, indicating rejection of the unit root hypothesis

at the 5% level of significance. However, in view of the evidence of noncausality, it

is appropriate to base the test on the selected noncausal AR(0,3)-t model. Such a

test has recently been proposed by Saikkonen and Sandberg (2013), and their test

statistic equals —13.86, indicating clear rejection even at the 1% level of significance.

Thus, there seems to be no evidence in favor of a unit root in the inflation series.
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4.2 Impulse Response Analysis

In this subsection, we examine inflation persistence by means of the generalized im-

pulse response function. As discussed in Section 3, the relevant shock whose dynamic

effects we examine, is the one-step ahead forecast error that is unpredictable by past

inflation. Figure 3 contains a box-and-whisker plot describing the densities of these

forecast errors. To make the figure legible, the density of the very large forecast er-

ror (median —20.50) pertaining to the potential outlier of 2008:4 is not shown. It is

clear that the density of the typical shock varies a lot from quarter to quarter so that

drawing them from a fixed distribution or setting the shock at a fixed value would not

produce GIRFs with a meaningful interpretation. For instance, unity is not included

in the 90% range in all quarters. Moreover, the upper panel of Figure 1 shows that the

relevant histories also change considerably over time, and visual inspection of the two

figures together suggests that shocks may be history-dependent. Specifically, small

shocks with low variance seem to be typical in the period of the Great Moderation,

when inflation was low and varied little. In the volatile period of the early 1980’s,

on the other hand, large shocks with greater variance seem more common. Hence,

computing the typical GIRF for each quarter by fixing the history and the shock

should be the most informative way to proceed.

Visual inspection of the typical impulse response functions shows that they indeed

vary a lot in shape from quarter to quarter. The decline to zero is never monotonous,

and the implied persistence seems to vary considerably. When reporting the results

below, we condition on the size and sign of the shock as well as the level of inflation

at the time of the shock by computing averages over the relevant GIRFs.

To summarize the persistence properties, we report the average π-life (or absorp-

tion time) of a shock, conditional on the absolute size of the shock and the level

of inflation at the time of the shock. This measure of persistence suggested by van

Dijk et al. (2007) is related to the half-life measure commonly used in the previous

empirical literature, but it is more general. In particular, the half-life defined as the

minimum time it takes for the impulse response function to reach a value less than

half of the initial impact is, in general, meaningful only when the impulse response
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function decays monotonically, which is not the case here.

In short, the π-lifeN(π, δt, ωt−1) related to a generalized impulse response function

GIRF (n, δt, ωt−1), n = 1, 2, . . . , gives the minimum value of n beyond which the

difference between the impulse responses at all greater values of n and the ultimate

response (GIRF∞(δt, ωt−1)) is less than or equal to a fraction π of the difference

between the initial impact and the ultimate response. Formally it can be written as

N (π, δt, ωt−1) =
∞∑
m=0

[
1−

∞∏
n=m

I (π, n, δt, ωt−1)

]
, (5)

where the indicator function

I (π, n, δt, ωt−1) ≡

I [|GIRF (n, δt, ωt−1)−GIRF∞(δt, ωt−1)| ≤ π |δt −GIRF∞(δt, ωt−1)|]

for 0 ≤ π ≤ 1 (for further details, see van Dijk et al. (2007)). In practice, a finite
maximum value of periods to the ultimate response must be chosen to approximate

GIRF∞(δt, ωt−1) and to truncate the summation in (5). Following the advice of van

Dijk at al. (2007), we choose a fairly large truncation point of 40, where the values

of the GIRF are already very close to zero. Because the π-life only takes integer

values, it may not always be able to discriminate between processes with different

persistence properties. To remedy this, van Dijk et al. (2007) recommend computing

it for several values of π.

The average π-lives for various values of π and conditioned on the absolute shock

size are reported in Table 2. As is common in the empirical literature on U.S. inflation,

we also report the results for two subsample periods, 1970:1—1982:4, and 1983:1—

2012:2, the latter of which is characterized by a large reduction in the volatility

of inflation and a new policy regime. The starting date of the new regime is not

unambiguous, but, for comparability, we choose to use the same division as Nobay et

al. (2010), whose study comes closest to ours in the previous literature. The leftmost

column (marked with heading A) corresponding to each subsample period gives the

average absorption time over all shocks as a function of π. The absorption times

naturally increase as π decreases, but the general conclusion, irrespective of the value
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of π, is that persistence is much lower in the latter subsample period. The same

conclusion was also drawn by Nobay et al. (2010) for the PCE inflation and Benati

(2008), inter alia, for consumer price inflation. The absorption times implied by the

causal AR(3,0)-t and AR(3,0)-N models (not shown) are similar in magnitude, and

actually indicate somewhat lower persistence when π = 0.5. However, as they are

independent of the size of the shock, they are unable to reveal the nonlinearities in

persistence that we next turn to.

In order to gauge the effect of the shock size, the quarters of each sample period

are divided into three groups of approximately equal magnitude by the absolute size

of the shock. In the latter subsample period, the shocks are considerably smaller on

average, which, of course, shows up in the cutoff points between the groups. They are

1.71 and 0.69 between the small and medium-sized shocks, and 2.53 and 1.56 between

the medium-sized and large shocks in the two periods, respectively. In each group,

the average π-life is always clearly greater in the first subsample period, reconfirming

the findings based on all shocks taken together. Moreover, in the latter subsample

period, the persistence always decreases as the size of the shock increases. In the first

subsample period there is a similar tendency although it is not equally clear. This is

in line with the implications of the menu cost models discussed in the Introduction as

well as the results of Nobay et al. (2010) although they did not find much difference

between the subsample periods. A potential explanation to this slight discrepancy

might be that they considered shocks of the same fixed size in both periods, while

our GIRFs are based on shocks typical in each quarter.

Table 3 shows how the average absorption times depend on the level of inflation

at the time of the shock. The quarters of each sample period are divided into three

groups of approximately equal magnitude by the inflation rate. In the entire sample

period, the dependence on the initial inflation is rather weak and seems to be masked

by the fact that the differences between the subsample periods are rather large and

the reactions go in different directions. The differences between the low and medium

inflation quarters are minor within and between the subsample periods. However,

in the quarters with high inflation, the absorption times are much longer (two to

three times, depending on π) in the first subsample period compared to the post-1982
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period. The respective cutoff points between medium and high inflation are 8.49

and 3.55, suggesting that in the first subsample period, a typical shock took a much

longer time to have an effect despite the higher level of inflation, while in the post-

1982 period, a shock was absorbed quickly when inflation was relatively high. These

results lend some support to the opportunistic approach to disinflation discussed in the

Introduction. In particular, in the latter subsample period, a potential explanation

to the more rapid absorption of shocks in quarters of high inflation may be more

aggressive monetary policy aimed at keeping inflation under control. Moreover, the

fact that it is only at high levels of inflation that there is less persistence, suggests

that the central bank is more concerned about inflation much above than below the

target. Our findings are also not entirely in conflict with those of Nobay et al. (2010),

who concluded that the speed of adjustment is the faster the further away inflation

is from its mean in the entire sample, and such mean reversion is more rapid in the

latter subsample period. However, the transition function of the ESTAR model is by

construction symmetric, implying a faster absorption of shocks both at low and high

inflation levels.

In addition to the examination of the dependence of the absorption times of shocks

on their size and the current inflation rate, it is interesting to check whether positive

and negative shocks have different effects. To that end, we employ the asymmetry

measure of van Dijk et al. (2007), defined for a specific shock δt and history ωt−1 as

the difference between the π-lives of δt and −δt,

ASY N (π, δt, ωt−1) = N (π, δt, ωt−1)−N (π,−δt, ωt−1) . (6)

If the absorption of the shock δt is symmetric, this measure equals zero for all val-

ues of π. Otherwise, assuming δt is positive (negative), a positive (negative) value

indicates that a positive (negative) shock takes a longer time to be absorbed than a

negative (positive) shock. It is also possible to assess statistically whether asymmetry

is significant by testing whether the average asymmetry measure over (a subset of)

shocks and histories equals zero. Unfortunately, this is hampered by the fact that

the realizations of ASY N (π, δt, ωt−1) are not independent across histories, as pointed

out by van Dijk et al. (2007). However, they suggest a conservative estimate of the
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standard error obtained by dividing the standard deviation of the asymmetry measure

by the square root of the number of combinations of shocks δt and histories ωt−1 over

which it is computed. In our case, each history corresponds to one typical shock, so

the latter equals the number of shocks included in the subset of interest.

In Table 4 are presented the average asymmetry measures for negative and pos-

itive shocks. We compute the π-life pertaining to the opposite of each shock, and

obtain the asymmetry measure for each quarter using (6). The asymmetry measures

are then averaged separately over positive and negative shocks in each sample pe-

riod. Hence, positive (negative) entries in the table tell how much shorter (longer)

the average π-life would be if the shock were the opposite of the typical shock in

each quarter. The positive and negative shocks are on average approximately equal

in absolute value in each sample period. Following van Dijk et al. (2007), an aver-

age asymmetry measure exceeding twice its standard error is considered significant.

Asymmetry is greatest for the positive shocks in the latter subsample period, which

is also reflected in the results for the entire sample period, and only these asymmetry

measures are deemed significant. These negative values indicate that in the quarters

when the typical shock is positive, a negative shock of the same magnitude would

have been more persistent. This contrasts the view discussed in the Introduction that

the central bank is more concerned about negative than positive output gaps, making

positive inflationary shocks more persistence than negative ones. On the contrary,

one potential explanation to our finding is that the central bank now reacts more

aggressively to positive than negative deviations from the inflation target. This is

also consistent with the finding in Table 3 that in the latter subsample period, shocks

are absorbed more rapidly when the inflation rate is high than when it is low.

5 Conclusion

In this paper, we study the persistence properties of quarterly U.S. consumer price

inflation by means of noncausal AR models, shown to fit and forecast inflation se-

ries well in the previous literature. While these models capture the autocorrelation

structure as accurately as their conventional causal counterparts, they are nonlinear,
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and, hence, can allow for different persistence properties of shocks of different size

and sign. Moreover, the absorption of shocks can depend on the inflation rate at the

time of the shock. A number of theoretical models imply these kinds of nonlinearities,

but the noncausal AR model is general in that it does not embody the theoretical

restrictions at the outset, and thus, facilitates more flexible analysis than, say, the

ESTAR model previously used to examine similar effects.

We consider quarterly U.S. consumer price inflation from 1970:1 to 2012:2. In

addition to the entire sample period, we report results separately for two subsample

periods, 1970:1—1982:4 and 1983:1—2012:2. In accordance with much of the previous

literature, we find a clear reduction in inflation persistence since the early 1980’s.

Moreover, large and negative shocks seem to be more persistent than small and pos-

itive ones only after 1982. The dependence of inflation persistence on the inflation

rate also seems to have changed in the early 1980’s. Before 1983, high persistence is

linked to a high inflation rate, while the situation appears to be the opposite after

1982. This suggests that monetary policy, aimed at keeping inflation under control

has become more aggressive.

This paper is, to the best of our knowledge, the first attempt to study the per-

sistence properties of inflation by means of noncausal AR models. Compared to the

previous literature on generalized impulse response analysis, a central challenge with

these models is the definition of the shock. Our solution is to measure the typical shock

for each quarter by the one-period forecast error, but it might be interesting to exam-

ine the robustness of this choice. We also assume that the parameters of the model

are constant over time. Despite this assumption, with the noncausal AR model, the

persistence properties are still allowed to vary over time. However, the model could

be extended to allow for breaks or time-varying parameters. Finally, while we have

only considered CPI inflation, it might be interesting to examine whether similar con-

clusions hold for other U.S. and international inflation series, including PCE or GDP

deflator inflation. We leave these issues for future research.
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Table 1: Estimation results of the third-order autoregressive models for the demeaned
U.S. consumer price inflation.

Model
AR(3,0)-N AR(3,0)-t AR(2,1)-t AR(1,2)-t AR(0,3)-t

φ1 0.338 0.302 0.419 0.949
(0.052) (0.078) (0.132) (0.037)

φ2 0.123 0.228 0.319
(0.055) (0.084) (0.102)

φ3 0.330 0.298
(0.052) (0.075)

ϕ1 0.031 —0.582 0.260
(0.138) (0.087) (0.098)

ϕ2 —0.262 0.291
(0.073) (0.069)

ϕ3 0.224
(0.073)

σ 2.594 2.800 2.828 3.061
(0.413) (0.480) (0.622) (1.072)

λ 3.452 3.294 2.978 2.597
(1.063) (0.942) (0.802) (0.638)

Log-likelihood —512.182 —366.032 —375.388 —368.211 —360.994

Ljung-Box (5) 0.395 0.182 <0.001 0.038 0.053
McLeod-Li (5) 0.969 0.926 0.541 0.001 0.127

AR(r, s) denotes the autoregressive model with the rth and sth order polynomials φ(B)
and ϕ(B−1), respectively. N and t refer to Gaussian and t-distributed errors, respectively. The
figures in parentheses are standard errors. Marginal significance levels of the Ljung-Box and
McLeod-Li tests with 5 lags are reported.
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Table 4: Average asymmetry measures for absorption times.

1970:1—2012:2 1970:1:1982:4 1983:1—2012:2

π P N P N P N

0.5 —0.87∗ —0.47 —0.68 0.76 —0.98∗ —0.17

0.4 —1.13∗ —0.36 —0.32 —1.05 —1.60∗ —0.03

0.3 —1.57∗ —0.44 —0.32 —1.43 —2.90∗ —0.10

0.2 —1.04∗ —0.32 1.13 —1.29 —2.30∗ —0.07

0.1 —1.24∗ 0.09 0.16 —1.33 —2.06∗ —0.15

The entries are average ASY N(π, δt, ωt−1) measures

over positive (P) and negative (N) shocks in each sam-

ple period. The numbers of positive (negative) shocks

equal 84 (81), 31 (21), and 53 (60), in the 1970:1—2012:3,

1970:1—1982:4, and 1983:1—2012:3 periods, respectively.

Entries larger than two times their standard error are

marked with an asterisk.
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Figure 1: Quarterly U.S. consumer price inflation 1970:1—2012:2 and its autocorrela-

tion function.
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Figure 2: The quantile-quantile plots of the residuals of AR(3,0)-N and AR(0,3)-t

models.
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Figure 3: The box-and-whisker plot of one-step ahead forecast errors of the AR(0,3)-t

model. The upper and lower bounds of each box are the 25th and 75th percentile

of the predictive density, while the whiskers mark the 5th and 95th percentiles. The

forecast error pertaining to 2008:4 is not included.
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