
EXTENDING THE SCOPE OF CUBE ROOT ASYMPTOTICS

MYUNG HWAN SEO AND TAISUKE OTSU

Preliminary and incomplete. Please do not distribute.

Abstract. This article extends the scope of cube root asymptotics for M-estimators in two di-

rections: allow weakly dependent observations and criterion functions drifting with the sample

sizes typically due to bandwidth sequences. For dependent empirical processes that charac-

terize criterions inducing cube root phenomena, maximal inequalities are established so that

a modified continuous mapping theorem for maximizing values of the criterions delivers limit

laws of the M-estimators. The limit theory is applied not only to extend existing examples,

such as maximum score estimator, nonparametric maximum likelihood density estimator under

monotonicity, and least median of squares, toward weakly dependent observations, but also to

address some open questions, such as asymptotic properties of the minimum volume predictive

region, nonparametric Hough transform estimator, and smoothed maximum score estimator for

dynamic panel data.

1. Introduction

There is a class of estimation problems where point estimators converge at the cube root
rate to non-normal distributions instead of the familiar squared root rate to normals. Since
Chernoff’s (1964) study on estimation of the mode at least, several papers reported emergence
of the cube root phenomena; see Prakasa Rao (1969) and Andrews et al. (1972), among others.
The cube root convergence commonly arises when the criterion functions for point estimation
are not smooth in parameters.

A seminal work by Kim and Pollard (1990) explained these cube root phenomena in a unified
framework by means of empirical process theory, and established a limit theory for a general
class of M-estimators defined by maximization of random processes that induces the cube root
asymptotics. The limit theory of Kim and Pollard (1990) is general enough to encompass existing
examples, such as the shorth (Andrews et al., 1972), least median of squares (Rousseeuw, 1984),
nonparametric monotone density estimator (Rao, 1969), and maximum score estimator (Manski,
1975), which are all illustrated in Kim and Pollard (1990). Also their theory has been applied
to other statistical contexts, such as the Hough transform estimator (Goldenshluger and Zeevi,
2004) and split point estimator in decision trees (Bühlmann and Yu, 2002, and Banerjee and
McKeague, 2007).

Since Kim and Pollard (1990), in spite of the generality, several statistical problems suggesting
emergence of the cube root asymptotics but being outside the scope of Kim and Pollard’s (1990)
framework are posed. Most problems appeared in the course of generalizations of the existing
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examples discussed above. As a prototype, let us consider construction of conditional minimum
volume predictive regions, studied generally by Polonik and Yao (2000), in a simplified manner.
A statistician who observes a dependent process {yt, xt} wishes to predict y ∈ R from x ∈ R by
an interval on the real line R. In this simple case, Polonik and Yao’s (2000) minimum volume
predictor of y at x = c with level α may be written as the interval [θ̂ − r̂, θ̂ + r̂], where

θ̂ = arg min
θ
P̂ [θ − r̂, θ + r̂], r̂ = inf

{
r : sup

θ
P̂ [θ − r, θ + r] ≥ α

}
,

P̂ [a, b] =
∑n

t=1 I{a ≤ yt ≤ b}K
(
xt−c
hn

)
/
∑n

t=1K
(
xt−c
hn

)
is a nonparametric estimator of the

conditional probability of {a ≤ yt ≤ b} given xt = c. K is a kernel function and hn is a
bandwidth varying with the sample size n. This predictor is a natural generalization of the
shorth to the conditional distribution of dependent observations. Polonik and Yao (2000, Remark
3b) conjectured that this predictor would converge at the (nhn)−1/3 rate. The framework of
Kim and Pollard (1990) cannot be applied directly to address this question by two reasons:
the observations are taken from a dependent process and the criterion function drifts with the
bandwidth parameter. To allow dependent observations, the empirical process theory of Kim
and Pollard (1990) for independent observations, in particular maximal inequalities to establish
weak convergence of the criterion process, needs to be modified. To allow bandwidth sequences,
the class of criterion functions for M-estimation needs to be reconsidered.

It should be emphasized that the above example is not an exception; several existing works
call for development of such generalizations. Anevski and Hössjer (2006) extended the limit
theory of nonparametric maximum likelihood under order restrictions toward weakly dependent
and long range dependent data. Their extension include monotone density estimation as a
special case. Goldenshluger and Zeevi (2004, p. 1916) mentioned possibility and importance
of a generalized Hough transform estimator with a radius sequence tending to zero and left it
for future research. Honoré and Kyriazidou (2000) proposed a maximum score-type estimator
containing a bandwidth for dynamic longitudinal or panel data models with binary dependent
variables and showed its consistency. However, the convergence rate and limiting distribution is
an open question. Finally extensions of the classical least median of squares and maximum score
estimators to dependent observations are still open questions (Zinde-Walsh, 2002, and de Jong
and Woutersen, 2011).

This article extends the scope of cube root asymptotics for M-estimators in two directions: al-
low weakly dependent observations and criterion functions drifting with the sample sizes typically
due to bandwidth sequences. For dependent empirical processes that characterize criterions in-
ducing cube root phenomena, maximal inequalities are established so that a modified continuous
mapping theorem for maximizing values of the criterions delivers limit laws of the M-estimators.
The limit theory is applied not only to extend existing examples, such as maximum score estima-
tor, nonparametric maximum likelihood density estimator under monotonicity, and least median
of squares, toward weakly dependent observations, but also to address some open questions,
such as asymptotic properties of the minimum volume predictive region, nonparametric Hough
transform estimator, and smoothed maximum score estimator under panel data.
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2. Cube root asymptotics with dependent observations

This section extends Kim and Pollard’s (1990) main theorem on cube root asymptotics of
the M-estimator to allow dependent data. This section focuses on the case where the criterion
function is independent of the sample size and consider an extension to dependent data. The
M-estimator θ̂ maximizes the random criterion

Pnfθ =
1

n

n∑
t=1

fθ(zt),

where {fθ : θ ∈ Θ} is a collection of functions indexed by a subset Θ of Rd and {zt} is a strictly
stationary sequence of random variables with marginal P . We characterize a class of criterion
functions that induces cube root phenomena (or sharp edge effects in the sense of Kim and
Pollard, 1990) and is general enough to cover all examples listed above. Let Pf =

∫
fdP for a

function f , | · | be the Euclidean norm of a vector, and ‖·‖2 be the L2-norm of a random variable.
The class of criterions of our interest is defined as follows.

Definition (Cube root class). A class of functions {fθ : θ ∈ Θ} is called the cube root class if

(i): {fθ : θ ∈ Θ} is a class of bounded functions and Pfθ is uniquely maximized and twice
continuously differentiable at θ0 with a negative definite second derivative matrix V.

(ii): There exist positive constants C and C ′ such that

|θ1 − θ2| ≤ C ‖fθ1 − fθ2‖2 , (1)

for all θ1, θ2 ∈ {Θ : |θ − θ0| ≤ C ′}.
(iii): There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ′|<ε

|fθ − fθ′ |2 ≤ C ′′ε. (2)

for all θ′ ∈ Θ and ε > 0.

Condition (i), related to Kim and Pollard (1990, Conditions (ii) and (iv) of the main theorem),
is a standard identification condition for M-estimation and local shape restriction to obtain
the cube root rate. Condition (ii), which does not appear in Kim and Pollard (1990), is an
additional condition to deal with dependent observations. Using the notation in Lemma M
below, this condition is used to obtain the entropy relation N[](ν,G

β
δ , ‖·‖2,β) ≤ N[](ν,G1

C2δ
, ‖·‖2).

For independent observations, this condition is not required because the L2,β-norm ‖·‖2,β in the
sense of Doukhan, Massart and Rio (1995) is equivalent to the L2-norm ‖·‖2. Condition (ii) is
often guaranteed by the identification condition in (i). Also this condition can be verified by an
expansion of ‖fθ1 − fθ2‖2 around θ1, θ2 = θ0. See Section 4 for specific illustrations. Condition
(iii) is a key condition for the cube root asymptotics. This condition implies an envelope condition
of Kim and Pollard (1990, Condition (vi)), PF 2

ε = P supθ∈Θ:|θ−θ0|<ε |fθ − fθ0 |
2 ≤ Cε for some

C > 0. For independent observations, upper bounds of maximal inequalities for uniformly
manageable classes (Kim and Pollard, 1990, p. 199) are characterized by PF 2

ε , and thus the
condition PF 2

ε ≤ Cε suffices to control empirical processes for M-estimation. However, for
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dependent observations, to best of our knowledge, there is no such general maximal inequality
and Condition (iii) cannot be replaced with PF 2

ε ≤ Cε.
Throughout this section, let {fθ : θ ∈ Θ} be a cube root class. We now study the limit

behavior of the M-estimator, which is precisely defined as a random variable θ̂ satisfying

Pnfθ̂ ≥ sup
θ∈Θ

Pnfθ − op(n−2/3).

The first step is to establish consistency of the M-estimator, i.e., θ̂ converges in probability to
the unique maximizer θ0 of Pfθ. The technical argument to derive the consistency is rather
standard and typically shown by uniform convergence of the criterion Pnfθ to Pfθ over Θ. In
this section we assume consistency of θ̂. See illustrations below for details to verify consistency.

The next step is to derive the convergence rate of θ̂. A key ingredient for this is to establish
tightness of the centered empirical process {Gn(fθ − fθ0) : θ ∈ Θ}, where Gnf =

√
n(Pnf −Pf)

for a function f . For independent observations, several maximal inequalities are available in the
literature (see, e.g., Kim and Pollard, 1990, p. 199). For dependent observations, to best of our
knowledge, there is no maximal inequality which can be applied to the cube root class. Our first
contribution is to establish a maximal inequality for the cube root class under some dependent
observations.

To characterize dependence of observations, this paper considers an absolutely regular process.
Let F0

−∞ and F∞m be σ-fields of {. . . , zt−1, z0} and {zm, zm+1, . . .}, respectively. Define the β-
mixing coefficient as βm = 1

2 sup
∑

(i,j)∈I×J |P{Ai∩Bj}−P{Ai}P{Bj}|, where the supremum is
taken over all the finite partitions {Ai}i∈I and {Bj}j∈J respectively F0

−∞ and F∞m measurable.
Also let β(·) be a function such that β(t) = β[t] if t ≥ 1 and β(t) = 1 otherwise, and β−1(·) be
the càdlàg inverse of β(·). Throughout the paper, we impose the following assumption to the
observations.

Assumption D. {zt} is a strictly stationary and absolutely regular process with β-mixing coef-
ficients {βm} such that βm = O(ρm) for some 0 < ρ < 1.

This assumption says the mixing coefficient βm should decay at an exponential rate. For ex-
ample, finite-order ARMA processes typically satisfy this assumption. For the minimum volume
prediction discussed in Introduction, Polonik and Yao (2000) assumed an exponential decay rate.
This assumption is required not only to establish the maximal inequality in Lemma M below
but also to establish a central limit theorem in Lemma C for finite dimensional convergence. See
remarks on Lemmas M and C below for further discussions. Under this assumption, the maximal
inequality for the empirical process Gn(fθ − fθ0) is obtained as follows.

Lemma M. There exist positive constants C and C ′ such that

P sup
|θ−θ0|<δ

|Gn(fθ − fθ0)| ≤ Cδ1/2,

for all n large enough and δ ∈ [n−1/2, C ′].
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Proof. For any function g, let Qg(u) be the inverse function of the tail probability function
x 7→ Pr{|g(zt)| > x}. Then we define the norm

‖g‖2,β =

√∫ 1

0
β−1(u)Qg(u)2du.

Let

Gβδ = {fθ − fθ0 : ‖fθ − fθ0‖2,β < δ for θ ∈ Θ},

G1
δ = {fθ − fθ0 : |θ − θ0| < δ for θ ∈ Θ},

G2
δ = {fθ − fθ0 : ‖fθ − fθ0‖2 < δ for θ ∈ Θ}.

Since g is bounded for any g ∈ G1
δ and so is Qg, we can always find a function ĝ such that

‖g‖22 ≤ ‖ĝ‖
2
2 ≤ 2 ‖g‖22 and

Qĝ(u) =

m∑
j=1

ajI{(j − 1)/m ≤ u < j/m},

satisfying |Qg| ≤ Qĝ, for some positive integer m and sequence {aj}. Now take any C ′ > 0,
and then pick any n and δ ∈ [n−1/2, C ′]. Hereafter positive constants Cj (j = 1, 2, . . .) are
independent of n and δ.

Next, based on the above notation, we derive some set inclusion relationships. Let M =
1
2 sup0<x≤1 x

−1
∫ x

0 β
−1(u)du. For any g ∈ G1

δ , it holds

‖g‖22 ≤
∫ 1

0
β−1(u)Qg(u)2du ≤ 1

m

m∑
j=1

a2
j

{
m

∫ j/m

(j−1)/m
β−1(u)du

}

≤

{
m

∫ 1/m

0
β−1(u)du

}∫ 1

0
Qĝ(u)2du

≤ M ‖g‖22 ,

where the first inequality is due to Doukhan, Massart and Rio (1995, Lemma 1) and the second
inequality follows from |Qg| ≤ Qĝ, the third inequality follows from monotonicity of β−1(u), and
the last inequality follows by ‖ĝ‖22 ≤ 2 ‖g‖22. This inequality implies1

‖fθ − fθ0‖2 ≤ ‖fθ − fθ0‖2,β ≤M ‖fθ − fθ0‖2 . (3)

Based on the above inequalities, we can deduce the inclusion relationships: there are positive
constants C1 and C2 such that

G1
δ ⊂ G2

C1δ1/2
⊂ Gβ

MC1δ1/2
, Gβδ ⊂ G

2
δ ⊂ G1

δC2
, (4)

where the relation G1
δ ⊂ G2

C1δ1/2
follows from (2) and the relation G2

δ ⊂ G1
δC2

follows from (1).
Third, based on the above set inclusion relationships, we derive some relationships for the

bracketing numbers. Let N[](ν,G, ‖·‖) be the bracketing number for a class of functions G with

1If g is a binary function, then m−1 = Pr{g(zt) = 1} and ‖g‖2,β = ‖g‖2
√
m

∫ 1/m

0
β−1(u)du.
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radius ν > 0 and norm ‖·‖. By (3) and the second relation in (4),

N[](ν,G
β
δ , ‖·‖2,β) ≤ N[](ν,G1

C2δ, ‖·‖2) ≤ C3

(
δ

ν

)2d

,

for some C3 > 0, where the second inequality follows from the argument to derive Andrews
(1993, eq. (4.7)) based on the L2-continuity assumption in (2). Therefore, we have ϕn(δ) =∫ δ

0

√
logN[](ν,G

β
δ , ‖·‖2,β)dν ≤ C4δ for some C4.

Finally, based on the above entropy condition, we apply the maximal inequality of Doukhan,
Massart and Rio (1995, Theorem 3), i.e., there exists a positive constant C5 depending only on
the mixing sequence {βm} such that

P sup
g∈Gβδ

|Gng| ≤ C5[1 + δ−1qGδ(min{1, vn(δ)})]ϕn(δ),

where qGδ(v) = supu≤v QG(u)
√∫ u

0 β
−1(ũ)dũ with the envelope function G of Gβδ (note: Gβδ is

a class of bounded functions) and vn(δ) is the unique solution of vn(δ)

vn(δ)−1
∫ vn(δ)
0 β−1(ũ)dũ

= ϕn(δ)2

nδ2
.

Since ϕn(δ) ≤ C4δ, it holds vn(δ) ≤ C5n
−1 for some C5 > 0. Now take some n0 such that

vn0(δ) ≤ 1, and then pick any n ≥ n0 and δ ∈ [n−1/2, C ′]. We have qG(min{1, vn(δ)}) ≤
C6

√
vn(δ)QG(vn(δ)) ≤ C7n

−1/2. Therefore, the conclusion follows by

P sup
g∈G1δ
|Gng| ≤ P sup

g∈Gβ
Mδ1/2

|Gng| ≤ C8δ
1/2,

where the first inequality follows from the first relation in (4). �

Lemma M can be shown under a slightly weaker condition sup0<x≤1 x
−1
∫ x

0 β
−1(u)du < ∞

than βm = O(ρm) in Assumption D. However, this weaker condition already excludes polynomial
decay of βm. To establish the convergence rate (and consistency as well), the following analog
of Kim and Pollard (1990, Lemma 4.1) is useful.

Lemma 1. For each ε > 0, there exist random variables {Rn} of order Op (1) and a positive
constant C such that

|Pn(fθ − fθ0)− P (fθ − fθ0)| ≤ ε|θ − θ0|2 + n−2/3R2
n,

for any |θ − θ0| ≤ C.

Proof. Define An,j = {θ : (j − 1)n−1/3 ≤ |θ − θ0| < jn−1/3} and

R2
n = n2/3 inf

n−1/3≤|θ−θ0|≤C
{|Pn(fθ − fθ0)− P (fθ − fθ0)| − ε|θ − θ0|2}.
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There exists a positive constant C such that

P{Rn > m} = P
{
|Pn(fθ − fθ0)− P (fθ − fθ0)| > ε|θ − θ0|2 + n−2/3m2 for some θ

}
≤
∞∑
j=1

P
{
n2/3|Pn(fθ − fθ0)− P (fθ − fθ0)| > ε(j − 1)2 +m2 for some θ ∈ An,j

}

≤
∞∑
j=1

C
√
j

ε(j − 1)2 +m2
,

for all m > 0, where the last equality is due to the Markov inequality and Lemma M. Since the
above sum is finite for all m > 0, the conclusion follows. �

Based on this lemma, the cube root convergence rate of θ̂ is obtained as follows. For |θ̂−θ0| ≥
n−1/3, we can take c > 0 such that

0 ≤ Pn(fθ̂ − fθ0) ≤ P (fθ̂ − fθ0) + ε|θ̂ − θ0|2 + n−2/3R2
n

≤ (−c+ ε)|θ̂ − θ0|2 +Op(n
−2/3),

for each ε > 0, where the second inequality follows from Lemma 1 and the third inequality follows
from the condition (ii) of the cube root class. Taking ε small enough to satisfy c− ε > 0 yields
contradiction and thus we obtain θ̂ − θ0 = Op(n

−1/3).
Given the cube root convergence rate of θ̂, the final step is to derive its limiting distribution.

To this end, it is common to apply a continuous mapping theorem of an argmax element (e.g.,
Kim and Pollard, 1990, Theorem 2.7). A key ingredient for this argument is to establish weak
convergence of the centered and normalized process

Zn(s) = n1/6Gn(fθ0+sn−1/3 − fθ0),

for |s| ≤ K with any K > 0. Weak convergence of the process Zn may be characterized
by its finite dimensional convergence and tightness (or stochastic equicontinuity). If {zt} is
independently and identically distributed as in Kim and Pollard (1990), a classical central limit
theorem combined with the Cramér-Wold device implies finite dimensional convergence, and a
maximal inequality on a suitably regularized class of functions guarantees tightness of the process
of criterion functions. For finite dimensional convergence, we employ the following central limit
theorem, which is based on Rio’s (1997, Corollary 1) central limit theorem for an α-mixing array.
Let Qg(u) be the inverse function of the tail probability function x 7→ P{|g(zt)| > x}.2

Lemma C. Suppose

sup
n

∫ 1

0
β−1(u)Qgn(u)2du <∞. (5)

Then V = limn→∞Var(Gngn) exists and Gngn
d→ N(0, V ).

Proof. First of all, any β-mixing process is α-mixing with αm ≤ βm/2. We now check Conditions
(a) and (b) of Rio (1997, Corollary 1). Condition (a) is verified by Rio (1997, Proposition 1),

2The function Qg(u), called the quantile function in Doukhan, Massart and Rio (1995), is different from a familiar
function u 7→ inf{x : u ≤ P{|g(zt)| ≤ x}}.
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which guarantees Var(Gngn) ≤
∫ 1

0 β
−1(u)Qgn(u)2du for all n. Since Var(Gngn) is bounded and

zt is strictly stationary in our case, Condition (b) of Rio (1997, Corollary 1) can be written as∫ 1

0
β−1(u)Qgn(u)2 inf

n
{n−1/2β−1(u)Qgn(u), 1}du→ 0,

as n→∞. Note that for each u ∈ (0, 1), it holds n−1/2β−1(u)Qgn(u)→ 0 as n→∞. Thus, the
dominated convergence theorem based on (5) implies Condition (b). �

The finite dimensional convergence of Zn follows from this lemma by setting gn = n1/6(fθ0+sn−1/3−
fθ0). The requirement (5) can be considered as a Lindeberg-type condition to guarantee Rio’s
(1997, Corollary 1) Lindeberg condition in our setup. It should be noted that for the rescaled
object gn = n1/6(fθ0+sn−1/3 − fθ0), the moments P |gn|2+δ with δ > 0 typically diverge. Thus
we cannot apply central limit theorems for mixing sequences with higher than second moments.
The Lindeberg condition is one of the weakest conditions, if any, for the central limit theorem
of mixing sequences without moment condition higher than two. The condition (5) excludes
polynomial decay of βm. Also, Doukhan, Massart and Rio (1994, Theorem 5) provided some
result, where any polynomial mixing rate will destroy the asymptotic normality of Gngn.

Lemma M’. For any ε > 0, there exist δ > 0 and a positive integer nδ such that

P sup
|s−s′|<δ

|Zn(s)− Zn(s′)| ≤ ε,

for all n ≥ nδ.

Compared to Lemma M used to derive the convergence rate of the estimator, Lemma M’ is
applied only to establish tightness of the process Zn. Therefore, we do not need an exact decay
rate on the right hand side of the above inequality. In particular, the process Zn(s) itself does
not satisfy the condition (1) of the cube root class.

Proof. Pick any K > 0 and ε > 0. Let gn,s,s′ = n1/6(fθ0+sn−1/3 − fθ0+s′n−1/3), G1
n,δ = {gn,s,s′ :

|s − s′| < δ}, Gβn,δ = {gn,s,s′ :
∥∥gn,s,s′∥∥2,β

< δ}, and G2
n,δ = {gn,s,s′ :

∥∥gn,s,s′∥∥2
< δ}. Since gn,s,s′

satisfies the condition (2), there is C1 > 0 such that G1
n,δ ⊂ G2

n,C1δ1/2
for all n and δ > 0. Also,

by the same argument to derive (3), there exists C2 > 0 such that
∥∥gn,s,s′∥∥2

≤
∥∥gn,s,s′∥∥2,β

≤
C2

∥∥gn,s,s′∥∥2
for all n, |s| ≤ K, and |s′| ≤ K, which implies

G1
n,δ ⊂ G2

n,C1δ1/2
⊂ Gβ

n,C1C2δ1/2
,

for all n and δ > 0. Also note that the bracketing numbers satisfy

N[](ν,G
β
n,δ, ‖·‖2,β) ≤ N[](ν,Gn, C2 ‖·‖2) ≤ C1C2ν

−d/2,

where Gn = {gn,s,s′ : |s| ≤ K, |s′| ≤ K} is the original space of gn,s,s′ and the second inequality
follows from the L2-continuity assumption in (2). Thus letting η = C1C2δ

1/2, there is a function

ϕ(η) such that ϕ(η) → 0 as η → 0 and ϕn(η) =
∫ η

0

√
logN[](ν,G

β
n,η, ‖·‖2,β)dν ≤ ϕ(η) for all

n and η > 0. Based on this entropy condition, we apply the maximal inequality of Doukhan,
Massart and Rio (1995, Theorem 3), i.e., there exists C3 > 0 depending only on the mixing
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sequence {βm} such that

P sup
g∈Gβn,η

|Gng| ≤ C3[1 + η−1qGn(min{1, vn(η)})]ϕ(η),

for all n and η > 0, where qGn(·) with the envelope Gn of Gβn,η is defined in the same way as the
proof of Lemma M (note: by the definition of Gβn,η, we can take the envelope Gn independently
from η), and vn(η) is the unique solution of vn(η)

vn(η)−1
∫ vn(η)
0 β−1(ũ)dũ

= ϕ2
n(η)
nη2

.

Now pick any η > 0 small enough so that 2C3ϕ(η) < ε. Since ϕn(η) ≤ ϕ(η), there is C4 > 0

such that vn(η) ≤ C4
ϕ(η)
nη2

for all n and η > 0. Since Gn = O(n1/6) by the definition of Gβn,η,
there exists C5 > 0 such that qGn(min{1, vn(η)}) ≤ C5

√
ϕ(η)η−1n−1/3 for all n large enough.

Therefore, the conclusion follows by

P sup
g∈G1n,η

|Gng| ≤ P sup
g∈Gβ

n,C1η
1/2

|Gng| ≤ ε,

for all n large enough, where the first inequality follows from G1
n,δ ⊂ G

β

n,C1C2δ1/2
. �

Based on finite dimensional convergence and Lemma M’, we establish weak convergence of Zn.
Then a continuous mapping theorem of an argmax element (Kim and Pollard, 1990, Theorem
2.7) implies the limiting distribution of the M-estimator θ̂. The main result of this section is
summarized as follows.

Theorem 1. Let {fθ : θ ∈ Θ} be a cube root class and θ̂ satisfy Pnfθ̂ ≥ supθ∈Θ Pnfθ−op(n−2/3).
Assume θ̂ converges in probability to θ0 ∈ intΘ, and supn

∫ 1
0 β
−1(u)Qgn,s(u)2du <∞ for each s,

where gn,s = n1/6(fθ0+sn−1/3 − fθ0). Then

n1/3(θ̂ − θ0)
d→ arg max

s
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value −s′V s/2, and
covariance kernel H(s1, s2) = limn→∞

∑n
t=−n Pgn,s1(z0)gn,s2(zt).

This theorem can be considered as an extension of the main theorem of Kim and Pollard (1990)
to the absolutely regular dependent process. The Lindeberg-type condition supn

∫ 1
0 β
−1(u)Qgn,s(u)2du <

∞ needs to be verified for each application. It is often the case that P{gn,s = 0} ≥ 1 − cn−1/3

for some c > 0 and all n large enough. In this case, this condition can be verified by∫ 1

0
β−1(u)Qgn,s(u)2du ≤ Cn1/3

∫ cn−1/3

0
β−1(u)du+n1/3{P (fθ0+sn−1/3−fθ0)}2

∫ 1

0
β−1(u)du <∞,

for all n, where the second inequality follows from the fact that β−1(·) is monotonically decreasing
and the last inequality follows by Assumption D.

It is often the case that the criterion function contains some nuisance parameters which can
be estimated by faster rates than Op(n

−1/3). For such situations, Theorem 1 is extended as
follows. For the rest of this section, let θ̂ and θ̃ satisfy Pnfθ̂,ν̂ ≥ supθ∈Θ Pnfθ,ν̂ +op(n

−2/3), where
ν̂ − ν0 = op(n

−1/3), and Pnfθ̃,ν0 ≥ supθ∈Θ Pnfθ,ν0 + op(n
−2/3), respectively.

Theorem 2. Let {fθ,ν : θ ∈ Θ, ν ∈ Λ} be a cube root class, where the condition (i) is replaced
with

9



(i)’: The class is bounded and for some negative definite matrix V1 and some finite matrix V2,

P (fθ,ν − fθ0,ν0) =
1

2
(θ − θ0)′V1(θ − θ0) + (θ − θ0)′V2(ν − ν0) + o(|θ − θ0|2 + |ν − ν0|2).

Then θ̂ = θ̃ + op(n
−1/3). Furthermore, if supn

∫ 1
0 β
−1(u)Qgn,s(u)2du < ∞ for each s with

gn,s = n1/6(fθ0+sn−1/3,ν0
− fθ0,ν0), then n1/3(θ̂ − θ0)

d→ arg maxs Z(s), where Z(s) is a Gaussian
process with continuous sample paths, expected value s′V1s/2 and covariance kernel H.

Proof. To ease notation, let θ0 = ν0 = 0. This proof shows |θ̂| = Op(n
−1/3). Then Theorem 1

and Lemma 2 below imply the conclusion. By Lemma 1 and the condition (i)’, for each ε > 0

there is C > 0 such that

Pn(fθ,ν − f0,0) ≤ P (fθ,ν − f0,0) + 2ε(|θ|2 + |ν|2) +Op(n
−2/3)

≤ 1

2
θ′V1θ + θ′V2ν + 2ε(|θ|2 + |ν|2) +Op(n

−2/3),

for all |(θ, ν)| ≤ C. From Pn(fθ̂,ν̂ − f0,0) ≥ 0, negative definiteness of V1, and ν̂ = op(n
−1/3), we

can find c > 0 such that

0 ≤ −c|θ̂|2 + |θ̂|op(n−1/3) +Op(n
−2/3),

which implies |θ̂| = Op(n
−1/3). �

Lemma 2. Suppose θ̂− θ0 = Op(n
−1/3), ν̂ − ν0 = op(n

−1/3), {fθ,ν} is a cube root class with the
condition (i), and Pfθ,ν is twice continuously differentiable at (θ0, ν0). Then θ̂ − θ̃ = op(n

−1/3).

Proof. To ease notation, let θ0 = ν0 = 0. By reparametrization,

n1/3 arg max
θ

Pn(fθ,ν̂−f,0ν̂) = arg max
s

[n2/3(Pn−P )(fsn−1/3,ν̂−f0,ν̂)+n2/3P (fsn−1/3,ν̂−f0,ν̂)]+op(1).

By Lemma M (replace θ with (θ, ν)) and ν̂ = op(n
−1/3),

n2/3(Pn − P )(fsn−1/3,ν̂ − f0,0)− n2/3(Pn − P )(fsn−1/3,0 − f0,0) = op(1).

uniformly in s. Also by an expansion around s = 0,

P (fsn−1/3,ν̂ − f0,ν̂) = n−1/3∂Pf0,ν̂

∂s
s+ n−2/3s′

∂2Pf0,0

∂s∂s′
s+ op(n

−2/3)

= n−2/3s′
∂2Pf0,0

∂s∂ν ′
ν̂ + n−2/3s′

∂2Pf0,0

∂s∂s′
s+ op(n

−2/3),

where the second inequality follows from ∂Pfθ,0
∂θ

∣∣∣
θ=0

= 0 and ν̂ = op(n
−1/3). Comparing this with

a Taylor expansion of P (fsn−1/3,0 − f0,0) yields that P (fsn−1/3,ν̂ − f0,ν̂) − P (fsn−1/3,0 − f0,0) =

op(n
−2/3) uniformly in s. Thus, the proof is complete. �

3. Cube root asymptotics with drifting criterions

We next investigate the case where the criterion function depends on n and typically contains
a bandwidth parameter to deal with some nonparametric component. The cube root class is
modified as follows.
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Definition (Drifting cube root class). A class of functions {fn,θ : θ ∈ Θ} belongs to the
drifting cube root class if

(i): {fn,θ : θ ∈ Θ} is a class of bounded functions for all n, supz,θ |fn,θ(z)| = O(h−1
n ) for a

sequence hn satisfying hn → 0 and n1/2hn →∞, and limn→∞ Pfn,θ is uniquely maximized
at θ0 and Pfn,θ is twice continuously differentiable at θ0 and admits the expansion

P (fn,θ − fn,θ0) =
1

2
(θ − θ0)′V (θ − θ0) + o(|θ − θ0|2) + o((nhn)−2/3), (6)

for a negative definite matrix V .
(ii): There exist positive constants C and C ′ such that

|θ1 − θ2| ≤ Ch1/2
n ‖fn,θ1 − fn,θ2‖2 uniformly over n,

for all θ1, θ2 ∈ {Θ : |θ − θ0| ≤ C ′}.
(iii): There exists a positive constant C ′′ such that

P sup
θ∈Θ:|θ−θ′|<ε

hn|fn,θ − fn,θ′ |2 ≤ C ′′ε uniformly over n,

for all θ′ ∈ Θ and ε > 0.

Similar comments to the ones for the cube root class apply. When the criterion fn,θ involves
some kernel estimate for a nonparametric component, hn is considered as a bandwidth parame-
ter. Typically the criterion takes the form of fn,θ(z) = 1

hn
K
(
x−c
hn

)
m(y, x, θ) for z = (y, x) and

some function m (e.g., the minimum volume prediction in Section 4.4 and smoothed maximum
score estimator for panel data by Honoré and Kyriazidou, 2000). In this case, the requirement
supz,θ |fn,θ(z)| = O(h−1

n ) in Condition (i) means boundedness of K
(
x−c
hn

)
m(y, x, θ). The condi-

tion in (6) can be understood as a restriction for P (fn,θ−fn,θ0) =
∫
K (x̃)m(y, c+hnx̃, θ)fyx(y, c+

hnx̃)dx̃dy by change of variables, where fyx is the joint density. The reasons for multiplication
of h1/2

n in Condition (ii) and hn in (iii) are understood in the same manner.
Throughout this section, let {fn,θ : θ ∈ Θ} be a cube root class. In this modified class

of functions, we study the limit behavior of the M-estimator, which is precisely defined as a
random variable θ̂ satisfying

Pnfn,θ̂ ≥ sup
θ∈Θ

Pnfn,θ − op((nhn)−2/3).

Similar to the previous section, we assume consistency of θ̂ to θ0 and focus on the convergence
rate and limiting distribution. To derive the convergence rate of θ̂, we need to establish tightness
of the centered empirical process {Gn(fn,θ−fn,θ0) : θ ∈ Θ} for the drifting cube root class defined
above. We show the following maximal inequality.

Lemma Mn. There exists positive constant C and C ′ such that

P sup
|θ−θ0|<δ

|Gn(fn,θ − fn,θ0)| ≤ Cδ1/2,

for all n large enough and δ ∈ [(nhn)−1/2, C ′].
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Proof. The proof is similar to that of Lemma M. Pick any C ′ > 0 and then pick any n and
δ ∈ [(nhn)−1/2, C ′]. Hereafter positive constants Cj (j = 1, 2, . . .) are independent of n and δ.
By changing the notation to indicate the drifting classes of functions, we can reach the following
bound

P sup
gn∈Gβn,δ

|Gngn| ≤ C1[1 + δ−1qGn(min{1, vn(δ)})]ϕn(δ),

where Gβn,δ = {fn,θ − fn,θ′ :
∥∥fn,θ − fn,θ′∥∥2,β

< δ for θ, θ′ ∈ Θ} with an envelope function Gn,

and ϕn(δ) =
∫ δ

0

√
logN[](ν,G

β
n,δ, ‖·‖2,β)dν. By the condition (iii) of the drifting cube root class,

we can conclude ϕn(δ) ≤ C2δ, which in turn implies vn(δ) ≤ C3n
−1 as in the proof of Lemma

M. Therefore, the conclusion follows by

δ−1qGn(min{1, vn(δ)}) ≤ C4δ
−1h−1/2

n n−1/2,

for all n large enough. �

Lemma 1 for the cube root class can be modified as follows. Since the proof is similar, it is
omitted.

Lemma 3. For each ε > 0, there exist random variables {Rn} of order Op (1) and a positive
constant C such that

|Pn(fn,θ − fn,θ0)− P (fn,θ − fn,θ0)| ≤ ε|θ − θ0|2 + (nhn)−2/3R2
n,

for any (nhn)−1/3 ≤ |θ − θ0| ≤ C.

Based on this lemma, the cube root convergence rate of θ̂ is obtained as follows. For |θ̂−θ0| ≥
(nhn)−1/3, we can take c > 0 such that

0 ≤ Pn(fn,θ̂ − fn,θ0) ≤ P (fn,θ̂ − fn,θ0) + ε|θ̂ − θ0|2 + (nhn)−2/3R2
n

≤ (−c+ ε)|θ̂ − θ0|+ o(|θ̂ − θ0|) +Op((nhn)−2/3),

for each ε > 0, where the second inequality follows from Lemma 3 and the third inequality follows
from the condition (i) of the cube root class. Taking ε small enough to satisfy c − ε > 0 yields
contradiction and thus we obtain θ̂ − θ0 = Op((nhn)−1/3).

In order to derive the limiting distribution, we need to establish tightness of the centered
process Zn(s) = (nhn)1/6Gn(fn,θ0+s(nhn)−1/3 − fn,θ0) for |s| ≤ K with any K > 0. The finite
dimensional convergence of Zn follows from Lemma C in the previous section by setting gn =

(nhn)1/6(fn,θ0+s(nhn)−1/3 − fn,θ0). For the maximal inequality, note that the process Zn itself
does not satisfy the condition (ii) in the drifting cube root class. On the other hand, we do not
need a sharp characterization of the upper bound for the maximal deviations of the process and
the following maximal inequality suffices.

Lemma Mn’. For any ε > 0, there exist δ > 0 and a positive integer nδ such that

P sup
|s−s′|<δ

|Zn(s)− Zn(s′)| ≤ ε,

for all n ≥ nδ.
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Based on this inequality, we can apply the argmax theorem (Kim and Pollard, 1990, Theorem
2.7) to derive the limiting distribution of the M-estimator θ̂ for the criterion function drifting
with n. The main theorem of this section is summarized as follows.

Theorem 3. Let {fn,θ : θ ∈ Θ} be a drifting cube root class and θ̂ satisfy Pnfn,θ̂ ≥ supθ∈Θ Pnfn,θ−
op((nhn)−2/3). Assume θ̂ converges in probability to θ0 ∈ intΘ, and supn

∫ 1
0 β
−1(u)Qgn,s(u)2du <

∞ for each s, where gn,s = (nhn)1/6(fn,θ0+s(nhn)−1/3 − fn,θ0). Then

(nhn)1/3(θ̂ − θ0)
d→ arg max

s
Z(s),

where Z(s) is a Gaussian process with continuous sample paths, expected value −s′V s/2, and
covariance kernel H(s1, s2) = limn→∞

∑n
t=−n Pgn,s1(z0)gn,s2(zt).

This theorem extends the main theorem of Kim and Pollard to the case where the criterion
function contains a bandwidth parameter. In this case, the convergence rate Op((nhn)−1/3)

is slower than the conventional Op(n−1/3) rate. This theorem can be extended to the case
where the criterion function contains estimated nuisance parameters that converge faster than
the Op((nhn)−1/3) rate. Let θ̂ and θ̃ satisfy Pnfn,θ̂,ν̂ ≥ supθ∈Θ Pnfn,θ,ν̂ + op((nhn)−2/3), where
ν̂ − ν0 = op((nhn)−2/3), and Pnfn,θ̃,ν0 ≥ supθ∈Θ Pnfn,θ,ν0 + op((nhn)−2/3), respectively.

Theorem 4. Let {fn,θ,ν : θ ∈ Θ, ν ∈ Λ} be a drifting cube root class, where the condition (i) is
replaced with
(i)’: The class is bounded and for some negative definite matrix V1 and some finite matrix V2,

P (fn,θ,ν − fn,θ0,ν0) =
1

2
(θ − θ0)′V1(θ − θ0) + (θ − θ0)′V2(ν − ν0) + o(|θ − θ0|2 + |ν − ν0|2).

Then θ̂ = θ̃ + op((nhn)−1/3). Furthermore, if supn
∫ 1

0 β
−1(u)Qgn,s(u)2du < ∞ for each s with

gn,s = (nhn)1/6(fn,θ0+s(nhn)−1/3,ν0
− fn,θ0,ν0), then n1/3(θ̂ − θ0)

d→ arg maxs Z(s), where Z(s) is
a Gaussian process with continuous sample paths, expected value s′V1s/2 and covariance kernel
H.

4. Applications

4.1. Maximum score estimator. As an application of Theorem 1, consider the maximum
score estimator for the regression model yt = x′tθ0 + ut, that is

θ̂ = arg max
θ∈S

n∑
t=1

[I{yt ≥ 0, x′tθ ≥ 0}+ I{yt < 0, x′tθ < 0}],

where S is the surface of the unit sphere in Rd. Since θ̂ is determined only up to scalar multiples,
we standardize it to be unit length. We impose the following assumptions. Let h(x, u) =

I{x′θ0 + u ≥ 0} − I{x′θ0 + u < 0}.

(a): {xt, ut} satisfies Assumption D. xt has compact support and a continuously differen-
tiable density p(·), the angular component of xt, considered as a random variable on S,
has a bounded and continuous density, and the density for the orthogonal angle to θ0 is
bounded away from zero.
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(b): Assume that |θ0| = 1, median(ut|xt) = 0, the function κ(x) = E[h(xt, ut)|xt = x] is
non-negative for x′θ0 ≥ 0 and non-positive for x′θ0 < 0 and is continuously differentiable,
and P{x′tθ0 = 0, κ̇(xt)

′θ0p(xt) > 0} > 0.

We can write as θ̂ = arg maxθ∈S Pnfθ and θ0 = arg maxθ∈S Pfθ, where

fθ(x, u) = h(x, u)[I{x′θ ≥ 0} − I{x′θ0 ≥ 0}].

Existence and uniqueness of θ0 are guaranteed by (b) (Manski, 1985). Also the uniform law of
large numbers for an absolutely regular process by Nobel and Dembo (1993, Theorem 1) implies
supθ∈S |Pnfθ − Pfθ|

p→ 0. Therefore, θ̂ is consistent for θ0.
We next compute V and H in Theorem 1. Under strict stationarity, we can apply the same

argument to Kim and Pollard (1990, pp. 214-215) to derive the second derivative

V =
∂2Pfθ
∂θ∂θ′

∣∣∣∣
θ=θ0

= −
∫

I{x′θ0 = 0}κ̇(x)′θ0p(x)xx′dσ,

where σ is the surface measure on the boundary of {x : x′θ0 ≥ 0}. This matrix is negative
definite under the last condition of (b). Pick any s1 and s2, and define gn,t = fθ0+n−1/3s1

(xt, ut)−
fθ0+n−1/3s2

(xt, ut). The covariance kernel characterized by H(s1, s2) = 1
2{L(s1, 0) + L(0, s2) −

L(s1, s2)}, where

L(s1, s2) = lim
n→∞

n4/3Var(Pngn,t) = lim
n→∞

n1/3{Var(gn,t) +
∞∑
m=1

Cov(gn,t, gn,t+m)}.

The limit n1/3Var(gn,t) is given in Kim and Pollard (1990, p. 215). Assumption D implies

|P{gn,t = j, gn,t+m = k} − P{gn,t = j}P{gn,t+m = k}| ≤ n−2/3βm,

for all n,m ≥ 1 and j, k = −1, 0, 1. Thus, {gn,t} is an α-mixing array whose mixing coefficients
are bounded by 2n−2/3βm. By applying the α-mixing inequality,

Cov(gn,t, gn,t+m) ≤ Cn−2/3βm ‖gn,t‖2p ,

for some p > 2 and C > 0. Note that

‖gn,t‖2p ≤ [P |I{x′t(θ0 + s1n
−1/3) > 0} − I{x′t(θ0 + s2n

−1/3) > 0}|]2/p = O(n−2/(3p)).

Combining these results, n1/3
∑∞

m=1 Cov(gn,t, gn,t+m)→ 0 as n→∞. Therefore, the covariance
kernel H is same as the independent case in Kim and Pollard (1990, p. 215).

We now verify that {fθ : θ ∈ S} belongs to the cube root class. The first requirement is
already verified. By Jensen’s inequality,

‖fθ1 − fθ2‖2 =
√
P |I{x′tθ1 ≥ 0} − I{x′tθ2 ≥ 0}| ≥ P{x′tθ1 ≥ 0 > x′tθ2}+ P{x′tθ2 ≥ 0 > x′tθ1},

for any θ1, θ2 ∈ S. Since the right hand side is the probability for a pair of wedge shaped regions
with an angle of order |θ1 − θ2| and the density for the orthogonal angle to θ0 is bounded away
from zero by (b), the second requirement is satisfied. For the third requirement, pick any ε > 0
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and θ̄ ∈ Θ, and note that

P sup
θ∈Θ:|θ−θ̄|<ε

|fθ − fθ̄|2 = P sup
θ∈Θ:|θ−θ̄|<ε

I{x′tθ ≥ 0 > x′tθ̄ or x′tθ̄ ≥ 0 > x′tθ}.

Again, the right hand side is the probability for a pair of wedge shaped regions with an angle
of order ε. Therefore, {fθ : θ ∈ S} is in the cube root class, and we can conclude that even if
the data obey a dependence process specified in Assumption D, the maximum score estimator
possesses the same limiting distribution as the independent sampling case.

4.2. Nonparametric estimation under order restrictions. Auxiliary results to show The-
orem 1 may be applied to establish weak convergence of processes. As an example, consider
estimation of a decreasing marginal density function of zt with support [0,∞). We impose As-
sumption D for {zt}. The nonparametric maximum likelihood estimator f̂(c) of the density
f(c) at a fixed c > 0 is given by the left derivative of the concave majorant of the empirical
distribution function F̂ . It is known that n1/3(f̂(c)− f(c)) can be written as the left derivative
of the concave majorant of the process Zn(s) = n2/3{F̂ (c + sn−1/3) − F̂ (c) − f(c)sn−1/3}. Let
fθ(z) = I{z ≤ c+ θ} and F be the distribution function of f . Decompose

Zn(s) = n1/6Gn(fsn−1/3 − f0) + n2/3{F (c+ sn−1/3)− F (c)− f(c)sn−1/3}.

A Taylor expansion implies that convergence of the second term to 1
2 ḟ(c)s2. We establish weak

convergence of Wn(s) = n1/6Gn(fsn−1/3 − f0). Lemma C (setting wtn = n1/6{(fsn−1/3(zt) −
f0(zt)) − P (fsn−1/3 − f0)}) implies finite dimensional convergence of Wn(s) to projections of a
centered Gaussian with the covariance kernel

H(s1, s2) = lim
n→∞

n1/3
n∑

t=−n
{F0t(c+ s1n

−1/3, c+ s2n
−1/3)− F (c+ s1n

−1/3)F (c+ s2n
−1/3)},

where F0t is the joint distribution function of (z0, zt). For tightness of Wn(s), it is enough to
show that {fθ : θ ∈ R} fulfills the conditions (ii) and (iii) of the the cube root class so that the
maximal inequality in Lemma M can be applied.

Note that
‖fθ1 − fθ2‖

2
2 = |F (c+ θ1)− F (c+ θ2)| = f(c+ θ̃)|θ1 − θ2|,

for some θ̃ between θ1 and θ2. Thus the condition (ii) is satisfied by choosing C ′ small enough.
Also, for any θ̄ ∈ R and ε > 0,

P sup
θ:|θ−θ̄|<ε

|fθ − fθ̄|2 = P sup
θ:|θ−θ̄|<ε

|I{xt ≤ c+ θ} − I{xt ≤ c+ θ̄}|

≤ max{F (c+ θ̄)− F (c+ θ̄)− ε, F (c+ θ̄) + ε− F (c+ θ̄)}

≤ f(0)ε,

i.e., the condition (iii) is verified. Therefore, Zn(s) weakly converges to Z(s), a Gaussian process
with expected value 1

2 ḟ(c)s2 and covariance kernel H.
For the remaining part, we can apply the same argument to Kim and Pollard (1990, pp. 216-

218) (by replacing their Lemma 4.1 with 1), and conclude that n1/3(f̂(c) − f(c)) converges in
distribution to the derivative of the concave majorant of Z evaluated at 0.
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4.3. Least median of squares. As an application of Theorem 2 (i), consider the least median
of squares estimator for the regression model yt = x′tβ0 + ut, that is

β̂ = arg min
θ

median{(y1 − x′1β)2, . . . , (yn − x′nβ)2}.

We impose the following assumptions.

(a): {xt, ut} satisfies Assumption D. xt and ut are independent. P |xt|2 < ∞, Pxtx′t is
positive definite, and the distribution of xt puts zero mass on each hyperplane.

(b): The density γ(·) of ut is bounded, differentiable, and symmetric around zero, and
decreases away from zero. γ(0) is bounded away from zero. |ut| has the unique median
ν0 and γ̇(ν0) < 0.

Note that θ̂ = β̂ − β0 is written as θ̂ = arg maxθ Pnfθ,ν̂ , where

fθ,ν(x, u) = I{x′θ − ν ≤ u ≤ x′θ + ν},

and ν̂ = inf{ν : supθ Pnfθ,ν ≥ 1
2}. Let ν0 = 1 to simplify the notation. Since {fθ,ν : θ ∈ Rd, ν ∈

R} is a VC subgraph class, Arcones and Yu (1994, Theorem 1) implies the uniform convergence
supθ,ν |Pnfθ,ν − Pfθ,ν | = Op(n

−1/2). Thus, the same argument to Kim and Pollard (1990, p.
212) yields the convergence rates ν̂ − 1 = Op(n

−1/2) and θ̂n = Op(n
−1/3) (by applying Lemma

1).
We next compute V and H in Corollary 1 (i). Observe that

V =
∂2P{x′tθ − 1 ≤ ut ≤ x′tθ + 1}

∂θ∂θ′

∣∣∣∣
θ=0

= 2γ̇(1)Pxtx
′
t,

which is negative definite by assumptions. Pick any s1 and s2. The covariance kernel is written
as H(s1, s2) = 1

2{L(s1, 0) +L(0, s2)−L(s1, s2)}, where L(s1, s2) = limn→∞ n
4/3Var(Pngn,t) and

gn,t = I{|x′ts1n
−1/3−ut| ≤ 1}− I{|x′ts2n

−1/3−ut| ≤ 1}. By a similar argument to the maximum
score example in Section 4.1, we can show that H is same as the one for the independent case
derived in Kim and Pollard (1990).

We now verify that {fθ,1 : θ ∈ Rd} belongs to the cube root class. By (b), Pfθ,1 is uniquely
maximized at θ0 = 0. So the first requirement is satisfied. Let p(·) and Γ(·) be the marginal
density of xt and the distribution function of ut, respectively. Some expansions (using symmetry
of γ(·)) yield

‖fθ1,1 − fθ2,1‖
2
2 = P{x′tθ1 − 1 ≤ ut ≤ x′tθ1 + 1}+ P{x′tθ2 − 1 ≤ ut ≤ x′tθ2 + 1}

−2P{{x′tθ1 − 1 ≤ ut ≤ x′tθ1 + 1} ∩ {x′tθ2 − 1 ≤ ut ≤ x′tθ2 + 1}}

= P |Γ(x′tθ1 + 1)− Γ(x′tθ2 + 1) + Γ(x′tθ1 − 1)− Γ(x′tθ2 − 1)|

≥ 1

2
(θ2 − θ1)′[P γ̇(x′tθ̄2 − 1)xtx

′
t](θ2 − θ1).
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Thus, the second condition can be verified under (b). For the third requirement, pick any ε > 0

and θ̄ ∈ Θ, and note that

P sup
θ:|θ−θ̄|<ε

|fθ,1 − fθ̄,1|2 = P sup
θ:|θ−θ̄|<ε

|I{x′tθ − 1 ≤ ut ≤ x′tθ + 1} − I{x′tθ̄ − 1 ≤ ut ≤ x′tθ̄ + 1}|

≤ P sup
θ:|θ−θ̄|<ε

{|Γ(x′tθ + 1)− Γ(x′tθ̄ + 1)|+ |Γ(x′tθ − 1)− Γ(x′tθ̄ − 1)|}.

By expansions around θ = θ̄ and boundedness of γ(·), the third requirement is also verified.
Therefore, {fθ,1 : θ ∈ Θ} is in the cube root class, and we can conclude that n1/3(β̂−β0) converges
in distribution to the argmax of Z(s), a Gaussian process with expected value −γ̇(1)s′Pxtx

′
ts

and the covariance kernel H derived above.

4.4. Minimum volume predictive region. As an illustration of Corollary 4 (ii), consider a
minimum volume predictor for a strictly stationary process proposed by Polonik and Yao (2000).
Suppose we are interested in predicting y ∈ R from x ∈ R based on the observations {yt, xt}.
The minimum volume predictor of y at x = c in the class I of intervals of R at level α ∈ [0, 1] is
defined as

Î = arg min
S∈I

µ(S) s.t. P̂ (S) ≥ α,

where µ is the Lebesgue measure and P̂ (S) =
∑n

t=1 I{yt ∈ S}K
(
xt−c
hn

)
/
∑n

t=1K
(
xt−c
hn

)
is the

kernel estimator of the conditional probability P{yt ∈ S|xt = c}. Since Î is an interval, it can
be written as Î = [θ̂ − r̂, θ̂ + r̂], where

θ̂ = arg min
θ
P̂ ([θ − r̂, θ + r̂]), r̂ = inf{r : sup

θ
P̂ ([θ − r, θ + r]) ≥ α}.

To study the asymptotic property of Î, we impose the following assumptions.

(a): {yt, xt} satisfies Assumption D. I0 = [θ0 − r0, θ0 + r0] is the unique shortest interval
such that P{yt ∈ I0|xt = c} ≥ α, and the conditional density fy|x=c of yt given xt = c is
bounded, strictly positive at θ0 ± r0, and satisfies f ′y|x=c(θ0 − r0)− f ′y|x=c(θ0 + r0) > 0.

(b): K is bounded and symmetric, and satisfies limx→∞ |x|K(x) = 0. As n→∞, nhn →∞
and nh4

n → 0.

For notational convenience, assume θ0 = 0 and r0 = 1. We first derive the convergence rate for r̂.
Note that r̂ = inf{r : supθ ĝ([θ− r, θ+ r]) ≥ αf̂(c)}, where ĝ(S) = 1

nhn

∑n
t=1 I{yt ∈ S}K

(
xt−c
hn

)
and f̂(c) = 1

nhn

∑n
t=1K

(
xt−c
hn

)
. By applying Nobel and Dembo (1993, Theorem 1), we can

obtain uniform convergence rate

max

{
|f̂(c)− f(c)|, sup

θ,r
|ĝ([θ − r, θ + r])− P{yt ∈ [θ − r, θ + r]|xt = c}f(c)|

}
= Op((nhn)−1/2+h2

n).

Thus the same argument to Kim and Pollard (1990, pp. 207-208) yields r̂− 1 = Op((nhn)−1/2 +

h2
n).
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We now consider the convergence rate for θ̂, which is written as θ̂ = arg minθ ĝ([θ− r̂, θ+ r̂]).
Consistency follows from uniqueness of (θ0, r0) in (a) and the uniform convergence

sup
θ
|ĝ([θ − r̂, θ + r̂])− P{yt ∈ [θ − 1, θ + 1]|xt = c}f(c)| p→ 0,

which follows by applying Nobel and Dembo (1993, Theorem 1). Let us reparametrize as ν = r−1

and define the normalized objective function as Pnfn,θ,ν , where z = (y, x)′ and

fn,θ,ν(z) =
1

h
K

(
x− c
h

)
[I{y ∈ [θ − 1− ν, θ + 1 + ν]} − I{y ∈ [−1− ν, 1 + ν]}].

Note that θ̂ = arg maxθ Pnfn,θ,r̂−1.
We now apply Theorem 3 to {fn,θ,ν}. By boundedness of K, it holds supz,θ,ν |fn,θ,ν(z)| =

O(h−1
n ). The condition (i’) is verified as follows

P (fn,θ,ν − fn,θ0,ν0)

=

∫
K(a)

[
{Fy|x(θ + 1 + ν|c+ hna)− Fy|x(θ − 1− ν|c+ hna)}
−{Fy|x(1 + ν|c+ hna)− Fy|x(−1− ν|c+ hna)}

]
da

= {Fy|x(θ + 1 + ν|c)− Fy|x(θ − 1− ν|c)} − {Fy|x(1 + ν|c)− Fy|x(−1− ν|c)}+O(h2
n)

= −1

2
{−f ′y|x(1|c) + f ′y|x(−1|c)}θ2 + {f ′y|x(1|c) + f ′y|x(−1|c)}θν + o(θ2 + ν2) +O(h2

n),

where the second and third equalities follow from expansions around a = 0 and (θ, ν) = (0, 0),
respectively.

For the condition (ii), note that

hn ‖fn,θ1,ν1 − fn,θ2,ν2‖
2
2

=

∫
K(a)2|Fy|x(θ2 − 1− ν2|x = c+ ah)− Fy|x(θ1 − 1− ν1|x = c+ ah)|fx(c+ ah)da

+

∫
K(a)2|Fy|x(θ2 + 1 + ν2|x = c+ ah)− Fy|x(θ1 + 1 + ν1|x = c+ ah)|fx(c+ ah)da

= T1 + T2.

Suppose θ2 − ν2 > θ1 − ν1. For T1,

T1 =

∫
K(a)2da[fy|x(−1|c){(θ2 − θ1)− (ν2 − ν1)}+

1

2
f ′y|x(−1|c){(θ2 − θ1)− (ν2 − ν1)}2]fX(c)

+o({(θ2 − θ1)− (ν2 − ν1)}2) +O(h)

≥ 1

2

∫
K(a)2daf ′y|x(−1|c){(θ2 − θ1)− (ν2 − ν1)}2.

For T2,

T2 =

∫
K(a)2da{Fy|x(θ2 + 1 + ν2|c)− Fy|x(θ1 + 1 + ν1|c)}fX(c) +O(h)

=

∫
K(a)2dafy|x(1|c)|(θ2 − θ1)− (ν2 − ν1)|fX(c) + o({(θ2 − θ1)− (ν2 − ν1)}2).

18



Therefore, the condition (ii) holds. The condition (iii) follows from the law of iterated ex-
pectation and Taylor expansions. Therefore, we obtain r̂ − r0 = Op((nhn)−1/2 + h2

n) and
θ̂ − θ0 = Op((nhn)−1/3 + hn).
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