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Abstract

We estimate a Bayesian, mixture model of financial decisions with

two typesof agents: one rational (endowed with preferences that are com-

patible with subjective expected utility theory) and one behavioral (with

either an S-shaped or a reverse-S-shaped utility function). Agents take

investment decisions by ranking the alternative assets according to their

performance measures. We estimate the evolution of the behavioral com-

ponent over time by using monthly data on the constituents of the S&P

500 index from January 1962 to April 2012. Our results confirm the

existence of a significant behavioral component, which is more likely to

emerge during periods of recession. We find a strong correlation between

the behavioral component and the VIX index, with the relationship being

stronger under the specification based on the S-shaped utility function.
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1 Introduction

The main assumption of the traditional theory of finance (LeRoy and Werner,

2000) is that, in taking their financial investment decisions, agents maximize a

well-conformed utility function that satisfies the requirements of the Subjective

Expected Utility Theory (SEUT).

As well known, the validity of this hypothesis has been strongly questioned

for its inability to account for systematic empirical puzzles, such as persistent

mispricing of assets and the existence of arbitrage opportunities in the finan-

cial market (Hirshleifer, 2001; Barberis and Thaler, 2003; Lamont and Thaler,

2003).1 Moreover, there is a huge experimental literature documenting sys-

tematic violations of the SEUT assumptions in risky gamble decisions (for an

extensive and comprehensive survey, see Starmer, 2000). Once admitted that

the requirements of the SEUT were rather than innocuous to describe finan-

cial decisions, scholars have started to introduce novel behavioral assumptions

on individual preferences in their models. Nowadays, the so-called behavioral

finance has established as a powerful and meaningful approach for financial

economists. An intriguing research question that is still open in the literature

concerns how to isolate and measure the behavioral component of the financial

market. Indeed, while the most of the studies seek to elaborate sophisticated

non-standard theories to rationalize puzzling evidence, little has been done to

measure the relative relevance, at the market level, of the alternative behavioral

hypothesis with respect to the benchmark SEUT setting. The present paper

tackles this empirical issue. In particular, by using monthly data on the five

hundred components of the S&P 500 index from January 1962 to April 2012,

we propose a Bayesian mixture approach to estimate the relative importance of

behavioral choices in the financial market. As in standard heterogeneous agent

settings (Zeeman, 2007; Grossman and Stiglitz, 1980; De Long et al., 2008), our

underlying model assumes that, in any time period, the evolution of the financial

market reflects the interplay between the investment choices made by two cate-

gories of non-strategic financial agents: one rational, endowed with a standard

risk averse utility function that is coherent with the SEUT requirements, and

the other characterized by some other set of behavioral preferences. Then, the

relative weight of the behavioral choices is estimated within a Bayesian frame-

work combining the view of both types of agents. Intuitively, in our framework

1The equity premium puzzle surely represents the most intriguing empirical inconsistency

studied by financial economists: although stocks on average exhibit attractive risk-return

performances, investors appear to demand a substantial risk premium in order to prefer this

asset to other riskless investment opportunities.
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we consider the situation of an hypothetical agent who makes investment deci-

sions by blending both the rational and the behavioral evaluations. A specific

parameter of the model captures the uncertainty about the rational priors and,

indirectly, it expresses the importance attached to the behavioral component.

This parameter represents the main object of our methodology and is estimated

by maximizing the investment performances obtained by blending the ratio-

nal and the behavioral evaluations at the single asset level. We thus measure

the extent of the behavioral component in an indirect way, by determining the

relevance that the hypothetical agent should have attached to the behavioral

evaluations relative to the rational counterpart, to maximize the financial per-

formances of her investment. In that way, the “relevance” parameter monitors

the impact of behavioral choices on market fluctuations. Our methodology

is grounded on traditional agent’s design, but also presents three main features

that are useful to analyze financial data with the aforementioned purpose. First,

it does not impose any particular restriction on the utility function to be used in

order to describe the preferences of the behavioral agents. Of all the new non-

Expected Utility theories proposed as valid alternatives to the SEUT, Prospect

Theory (Kahneman and Tversky, 1979; Tversky and Kahneman, 1992) repre-

sents the most successful and intriguing approach. According to the original

formulation, agents’ preferences are described by an S-shaped value function

that presents two main attributes: (a) agents perceive a monetary outcome as

a gain or a loss relative to a reference point; (b) agents’ risk attitude changes

over the monetary outcomes such that they exhibit risk averse preferences in

the gain domain while they are risk lover in the loss domain. As a first step, we

set the Bayesian mixture by assuming that the behavioral agents are endowed

with a S-shaped utility function. Nevertheless, in order to check for robustness

and in line with recent empirical findings (see Tibiletti and Farinelli, 2003; Mal-

mendier and Nagel, 2011; Guiso, Sapienza and Zingales, 2013), we also replicate

our analysis by considering a reversed-S-shaped value function that is concave in

the loss domain and convex in the gain domain. Second, the relative importance

of the behavioral component is estimated in every period by using an optimizing

approach that is based on performance measures. Performance measures have

several advantages from an empirical point of view. First, they summarize into

a single parameter the interplay between risk and return of the corresponding

asset. Second, performance measures can be ordered in such a way that assets

with higher measures are more performing. Third, in order to define the per-

formance measure of an asset, the financial agent chooses the partition of the

wealth between a riskless activity and the risky asset that maximizes her util-
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ity function (Pedersen and Satchell, 2002).In a capital allocation setting, both

the rational and the behavioral agents make choices by maximizing a specific

performance measure, directly related to the feature of their utility functions.

The risk averse agents consider the Generalized Sharpe ratio (see Zakamouline

and Koekebakker, 2009b), while the Z-ratio is adopted by the behavioral agents

(Zakamouline, 2011). In order to make their investments decisions, in any time

period, each of the two categories of agents first determine the performance mea-

sure associated with each of the five hundred constituents of the S&P 500, and

then builds a ranking going from the most to the least performing asset. Given

the rankings built on the basis of their utility functions, agents allocate their

wealth on the set including the “best performing” assets. . Given this frame-

work, the financial market is seen as a composite of the choices made by the

two categories of agents. Therefore, we can imagine that the optimal choice in

the market might be that associated with the investment decisions taken by an

hypothetic/imaginary agent that blends the two rankings. This agent produces

a mixture ranking that is built by conditioning, in a Bayesian setting, the prior

ordering of the rational, risk-averse agents on that produced by the behavioral

category. The mixture depends on a weighting factor that expresses the confi-

dence on the rational priors, or, from an antithetic point of view, the relative

weight of the behavioral views over the rational ones: the higher the value of

the weighting factor, the higher the relevance of the behavioral choices in the

aggregated measure is. In particular, in every period, the estimated value of the

weighting factor is obtained by maximizing the cumulated return of hundred

given number of most performing assets of the mixture ranking. Intuitively,

the weighting factor captures the extent to which the agents on their whole,

and therefore the financial market, should have moved from the ordering of the

rational category to the ranking of the behavioral agents to maximize their fi-

nancial performances. Third, as the estimating procedure is recursively applied

period by period, it allows to study how the relative importance of behavioral

choices evolves over time and whether there exists a linkage between its evolu-

tion and the financial/economic cycle. For instance, under the assumption that

the behavioral agents are endowed with an S-shaped loss averse value function

produces the intuitive prediction that the attitude of undertaking risky invest-

ments changes according to the fluctuations of the financial market. On the

one hand, in periods of (financial and economic) recession, financial agents are

attracted by more risky investments which might generate, with some positive

probability, returns that compensate previous (observed) losses. On the other

hand, in periods of expansion, financial agents are more reluctant to undertake
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a risky investment which might reduce, with some positive probability, previous

(observed) capital gains. Our results confirm the existence of a substantial be-

havioral impact in the financial market fluctuations. Under both the behavioral

functions abovementioned, the weighting factor is significantly greater than zero

and, coherently with the intuitive predictions discussed above, reaches its peaks

in proximity of periods of financial and economic crises. Moreover, compared

to a standard setting in which all agents are assumed to be rational, we find

that the average return of the best (one hundred) assets selected by the mixture

specification is more correlated to the average return of two benchmark selec-

tions, S&P 500 and S&P 100. To make their investment decisions, financial

agents build the rankings by using a substantial quantity of information on the

past returns of the assets. In particular, we assume that, in order to define the

performance measure of an asset in a period, an agent considers the distribu-

tion of its past returns in the previous 60 months. This is compatible with the

idea that the performance measure defined by an agent in a period represents

her best adaptive expectation on the future performance of the corresponding

asset. Different periods can be clearly used but those have an impact on the

evaluation of performance measures: shorter periods increase the variability of

performance measures and thus amplify the uncertainty of the rankings. On

the basis of the previous considerations, in order to assess whether our method-

ology provides insight to explain (some proxy of) the real expectations in the

financial market, we study the relationship between the estimated weighting

factor (time) series and the VIX (CBOE, 2003). Under both the behavioral

utility functions, we find a significant, high correlation between the estimated

weighting factors and the VIX, suggesting that the behavioral component can

account for a substantial portion of financial expectations. Interestingly, com-

pared to the S-shaped specification, the correlation between the VIX index and

the estimated weighting factors drops substantially under the reverse-S-shaped

value function.

2 Different agents in the market

In our framework there exist two types of agents which differ on the base of their

utility function. These decision makers must choose their optimal allocation and

do their evaluation in terms of performance measures at the single asset level. As

we will discuss later, performance measures are related to the level of maximum
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expected utility provided by a given single asset, and, generally speaking2, are

functions of the moments of the risky assets returns distribution. The higher the

performance measure, the higher the maximum expected utility provided to the

investor. Given performance measures at the single asset level, the allocation

choice of the agent is made by investing in a subset of the assets (a fraction of

the investment universe), those with higher scores in the performance measures.

The first type of agent which we consider might be equipped with the classical

utility function coming from the expected utility theory. We thus refer in this

case to the optimal choices of a rational agent. The chosen utility function, the

power utility, belongs to the class of Constant Relative Risk Aversion (CRRA)

utility functions. Notably, as proved by Zakamouline and Koekebakker (2009b),

the CRRA utility functions lead to the identification of a performance measure

which is coherent with market equilibrium. The utility function of the rational

agent might thus defined as follows:

U(W ) =







1
ρW

1−ρ, if ρ > 0, , ρ 6= 1

lnW if ρ = 1
(1)

where W is the agent’s wealth and ρ measures the degree of relative risk

aversion.

The power utility function has been extensively used in empirical studies, some

of those aiming at identifying the value of ρ. The results of Mehra and Prescott

(1985) indicates a value around 30 to ensure consistency with the observed mar-

ket equity premium. As reported in Zakamouline and Koekebakker (2009b), for

high values of ρ, the relative preferences across the moments of the distribu-

tions are similar to those of Constant Absolute Risk Aversion (CARA) utility

functions.

In this regards, for computational convenience, we consider the a CARA instead

of a CRRA utility function. Namely, we associate the rational agents with a

negative exponential utility,

U(W ) = −e−λW (2)

where λ represents the coefficient of risk aversion. Such a coefficient affects the

concavity property of the utility function, which is also influenced by the wealth

of the investor W . An example of the utility function is reported in Figure 1.

The second type of agent we consider is characterized by a behavioral utility

function. In general, we define a behavioural investor as a decision maker that

2This concept is related to the maximum principle introduced by Pedersen and Satchell

(2002)
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discriminates an outcome above and below a reference point, i.e. gains versus

losses. Consequently, the investor’s utility function behaves differently in the

domain of gains and in the one of losses with a kink at the reference point,

U(W )







U+(W ) if W ≥ W0,

U−(W ) if W < W0.
(3)

where W0 is the reference point while U+(W ) and U+(W ) are two functions

associated with the domains of gains and losses, respectively. According to

the domain considered, gains or losses, different type of risks might arise from

this behavioral utility function. Recently, Zakamouline (2011) has proposed a

generalized behavioural utility function characterized by a piecewise linear plus

power utility function,

U(W ) =







1+(W −W0)× (W −W0)− (γ+/α)(W −W0)
α, if W ≥ W0,

−λ(1−(W0 −W )× (W −W0) + (γ−/β)(W0 −W )β), if W < W0,

(4)

where , 1+ (·) and 1− (·) are the indicator functions in {0, 1} which define the

linear part of the utility, and assume unit value for positive or negative argu-

ments, respectively, and zero otherwise. Moreover, γ+ and γ− are real numbers

that affect the shape of the utility and, finally, the additional parameters λ > 0,

α > 0 and β > 0 are real numbers. The utility function is continuous and in-

creasing in wealth, and with proved existence of the first and second derivatives

with respect to the wealth of the investor W .

The two utility functions previously described are generally considered for

the evaluation of optimal investment decisions, or for the construction of opti-

mal allocations between the risky asset and the risk-free investment, or within

a set of risky assets. In our framework, the agents have to allocate their wealth

across a set of risky investments. However, the allocation choices made by the

decision makers is performed in term of the expected utility provided by each

single asset. Then, given those single asset expected utility, the agents rank

assets and invest on the top performers. Consequently, we refer to a single risky

asset choice instead of a portfolio decision/allocation where many different risky

activities are jointly considered. In this way, we are allowed to compare the dif-

ferent evaluation of the two type of investors across the assets (the investment

universe). In practice, we are interested in the rankings provided by the ratio-

nal and behavioral utility functions. We now describe how we derive asset ranks

starting from the expected utility.
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The expected utility of investment i is given as the convex combination of

the utilities associated with a collection of different and alternative outcomes

xi, each corresponding to the realization of a given state of the world. Each

realization is weighted by its respective probability, leading to following charac-

terization of expected utility

E [U (X)] =

∫

u(x)f(x)dx, (5)

where f(x) is the probability density function associating to each state of the

world a given probability. In this case the utility is expressed as a function

of the risky asset X , to highlight their relations. However, the wealth of the

investor, not explicitly appearing, is also playing a role. In fact, the wealth W

is always allocated between a risky and a risk free asset.

According to the maximum principle, the performance measure is strictly

related to the level of maximum expected utility originated by a given financial

activity.3 In fact, the higher is the value of the performance measure, the higher

is the maximum expected utility provided to the investor.

The Mean–Variance by Markowitz (1952) is a particular case of the expected

utility theory when the returns are normally distributed. In this case, the Sharpe

Ratio is the optimal solution for the maximization of the expected utility (the

CARA negative exponential utility function).

Let’s consider a decision maker with wealth W at the begin of a period t0.

Moreover, a denotes the amount of wealth allocated in a risky asset, while

W − a is the wealth allocated in the riskfree asset rf . At the end of the period

t1 the wealth of the investor will be,

W̃ = a× (1 + x) + (W − a)× (1 + rf ) = a× (x− rf ) + w × (1 + rf ) (6)

where x is the return provided by the risky asset. In this framework, the aim

of the investor is to maximize the expected utility with respect to the amount

invested in the risky asset, a. Hence, the optimal problem corresponds to a

utility maximization with respect to a,

max
a

E[U(w̃)]. (7)

Given the CARA function and the Gaussianity assumption, the maximized ex-

pected utility will be

E[U∗(W̃ )] = E[−e−λ[a(x−rf )+W (1+rf )]] = E[−e−λ[a(x−rf)] × e−λW (1+rf )] (8)

3The axiomatization approach is an alternative method for defining the performance mea-

sure. See De Giorgi (2005) and Cherny and Madan (2009).
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where the last term within parentheses is a deterministic quantity.

By setting x0 = W (1 + rf ) as in Zakamouline (2011), we can approximate the

expected utility using Taylor’s series,

E[U(W̃ )] = −1 + aλE(x − rf )−
λ2

2
a2E(x− rf )

2 +O(W̃ ). (9)

From the first order condition (FOC),

∂E[U(w̃)]

∂a
= λE(x − rf )− λ2E(x− rf )

2a = 0 (10)

we obtain the Sharpe Ratio as the quantity that maximize the expected utility

function,

a∗ =
1

λ

µ− rf
σ2

=
1

λ

SR

σ
. (11)

However, the Sharpe ratio begins to be biased both in the measurement of

optimal allocations and in the ranking across a collection of assets when there is

a departure from the normal distribution assumption for the risky asset returns.

This has been empirically demonstrated in Gatfaoui (2009), among others. To

overcome this issue and still remaining within the expected utility maximization

framework, Zakamouline and Koekebakker (2009b), among others, suggested the

introduction of a generalized Sharpe ratio. Such a quantity would be sensitive

to higher order moments, and can be evaluated with a parametric or a non-

parametric methodology. In the non-parametric estimation, by following the

Hodges (1998) conjecture, Zakamouline and Koekebakker (2009b) derived what

they called Generalized Sharpe Ratio, GSR.

Recall first the maximization of the expected utility,

E[U(W̃ )] = E
[

− e−λ(x−rf)
]

= max
a

∫ ∞

−∞

−e−λa(x−rf)f̂h(x)dx (12)

where f̂h(x) is now the estimated kernel density function of the risky asset

returns. We thus differ from the previous simplified framework as we do not

impose a parametric form to the risky asset return density. The GSR is obtained

by the numerical optimization of the expected utility, see Zakamouline and

Koekebakker (2009b),

GSR =
√

−2 log(−E[U(w̃)], (13)

where the argument of the log in (13) is defined in (12). Note that, by resorting

to the GSR, all moments of the risky asset returns play a role, and we are thus

not constraining ourselves to the evaluation of the mean and variance. Notably,

the GSR approaches to the standard Sharpe ratio when the underlying distri-

bution of the risky asset returns is close to the Gaussian. We consider GSR as
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the performance measure adopted by the rational investor to rank risky assets.

The rational investor would prefer assets with higher GSR to assets with lower

values of the performance measure.

We move now to the choices of the behavioural agent. In this case, the

expected generalised behavioural utility function can be approximated by a

function of the mean and of partial moments of distribution. In this regards,

Zakamouline (2011) verifies that the optimal allocation of an agent depends

from a ratio playing the same role of the GSR, that is, the performance measure

which maximizes the utility function for the behavioural agent. The new ratio,

called the Z-ratio, has been derived with the use of the maximum principle and

under some conditions, see Zakamouline (2011) for further details. The Z-ratio

is given as

Zγ
−
,γ+,λ,β =

E(x) − rf − (1−(W −W0)λ− 1)LPM1(x, rf )
β
√

γ+UPMβ(x, rf ) + λγ−LPMβ(x, rf )
.

where LPM and UPM are, respectively, the lower and upper partial moments

as defined by Fishburn(1977),

LPMn(x, r) =

∫ r

−∞

(r − x)ndFx(x),

UPMn(x, r) =

∫ ∞

r

(x− r)ndFx(x),

where n is the order of the partial moment of x at a threshold level r, usually

set at the risk free return, and Fx(·) is the cumulative distribution function of

x. We stress we will assume that the behavioural agents rank the risky assets

using the Z-ratio of each risky asset. Similarly to the GSR, higher values of the

Z-ratio are preferred to lower values.

There is one additional element we must consider when analysing the choices

of behavioural agents. The utility function proposed by Zakamouline (2011)

allows the construction of different preferences or beliefs of the agents through

the calibration of the its parameters. Therefore, the concavity and convexity in

the domain of gains and losses can be shaped in different ways and can give rise

to different choices.

In this regards, we decline the general behavioral utility function in order to

obtain an S-shaped utility similar to the the utility function used in prospect

and cumulative prospect theory by Kahneman and Tversky (1979).4 The utility

4The best choice would be the classical utility function by (Kahneman and Tversky, 1979):






(W −W0)α

−λ(W0 −W )β
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function we chose is reported in Figure 2 and corresponds to the following choices

for the parameters: γ+ = 0.1, γ− = −0.1, λ = 1.5, and β = α = 2. The

differences between the use of this utility function with respect to the classical

S-shaped of Kahneman and Tversky (1979) lies in the definition of loss aversion.

In our version of the S-shaped utility function of the decision maker exhibits

loss aversion in the sense of Köbberling and Wakker (2005). The loss aversion

is defined around the reference point in a local sense,5 that is, if we define the

ratio

λ =
U ′(W0−)

U ′(W0+)

where in the numerator we have the left derivative and in the denominator

the right derivative, the individual exhibits loss aversion if λ is greater than

one.This implies that the utility function is steeper in the domain of losses:

losses loom larger than corresponding gains, (Kahneman and Tversky, 1979).

The main feature of the S-shaped utility function is the concavity in the gains

and the convexity in the losses. In fact, the decision maker is risk adverse in

the outcome above the reference point, and risk seeker below.6

Up to this point, we moved from the expected utility to the derivation of a

performance measure. In turn, the last quantity is used by both the rational

and behavioural agents to rank assets. One element is still missing, and refers

to the construction of optimal allocations. We can here assume that agents

allocate their wealth across the assets with highest ranks, that is highest values

of the performance measure. If the market includes K assets, we might assume

that the rational (behavioural) investor allocates his wealth across the M << K

assets with highest value of the GSR (Z-ratio). When doing that, agents might

determine the optimal weights of those K assets, or simply use naive criteria

such as resorting to an equally weighted allocation scheme. Note that the last

Nonetheless, Zakamouline and Koekebakker (2009a) shown that the existence of the solution

and thus the Z-ratio requires β > α which implies the absence of loss aversion in the utility.
5While Kahneman and Tversky (1979) define the loss aversion in a global sense,

−U(W0 −∆W ) > U(W0 +∆W ), ∀∆W > 0.

See Zakamouline and Koekebakker (2009a) for a detail explanation.
6One well known experiment from (Kahneman and Tversky, 1979) is the choice among two

lotteries in two different settings with their related probabilities:

� ($6,000,25%), or ($4,000,25%;$2,000,25%)

� (-$6,000,25%), or (-$4,000,25%;-$2,000,25%)

In the first problem, most of the individuals in the experiment choose the second option

while in the second they choose the first option. Clearly, the first setting represents a choice

in the domain of gains while the second a choice in the domain of losses. This gives rise to

the concavity (convexity) in gains (losses) of the S-shaped utility function.
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choice would allow limiting the impact the estimation error and has been shown

to be preferred over optimal weighting schemes by DeMiguel et al. (2009). In

this work we assume that agents allocate their portfolio using equal weights

across a (relatively) small number of assets.

3 The Market Model

As we discussed in the previous section, we assume that two types of agents

are present in the market. However, we do not know which type is prevailing,

neither, irrespectively of their number, which type of agent is affecting more

the market fluctuations. Our objective is to determine the relevance or the

impact of behavioural choices in the movements of risky asset returns. We

propose to recover such a measure in an indirect fashion by starting from the

presence of two types of agents. Under this assumption, the observed market

behaviour is a blend of choices made by rational and behavioural agents. As a

consequence, one intuitive way to recover the impact of behavioural elements

is to blend the choices of rational and behavioural agents and estimate the

blending parameter(s) in such a way that the combination of choices is as closer

as possible to the observed market fluctuations. In the following, starting from

this intuition, we present our approach for recovering the impact and relevance

of behavioural beliefs in a financial market.

An investor equipped with the expected utility theory is usually considered

the benchmark for the rational investor. Therefore, according to Zakamouline

and Koekebakker (2009b), the generalized Sharpe Ratio may represent the mea-

sure used to evaluate the assets in terms of this utility function. For the be-

havioural investor, we consider the S-shaped utility function introduced by Kah-

neman and Tversky (1979). In this case, the Zakamouline and Koekebakker

(2009a) Z−ratio drives assets evaluation.

One way of blending the choices of the two agents types is to resort to a

Bayesian framework where one of the two agent’s beliefs is considered a prior,

while the other agent choices assume the role of additional conditioning infor-

mation. As a result, the posterior will represent a composite of rational and

behavioural elements. From a Bayesian perspective, we define the prior as the

rational investor. Such a choice is purely subjective, but allows, in a limiting

case, to obtain the rational choices as the market outcome. The conditioning

component is thus represented by the behavioural investor. As the choices of

the two types of agents are driven by performance measures, GSR and Z-ratio,
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the blending of choices is made at the performance measure level.

We thus start by assuming that both performance measures are normally dis-

tributed centred on their mean. For a generic performance measure PM we

have

PM ∼ N(µPM , σ2
PM ). (14)

Therefore, for the prior it holds that

µGSR = GSR(E(U∗(W̃ ))) + ǫ, ǫ ∼ N(0, σ2), (15)

while for the conditional we have

µZ = Zγ
−
,γ+,λ,β,(E(U∗(W̃ ))) + η, η ∼ N(0, ω2). (16)

Note that both distributions have mean set to the optimal choice for the agent,

that is the Generalized Sharpe Ratio and the Z-ratio derived from market data.

Moreover, the distributions refer to the performance measures of a single asset,

that is, we have a collection of distributions, two for each risky asset present in

the market. Finally, to simplify the treatment, we also assume that innovations,

ǫ and η, are independent. Note that, by introducing innovations in (15) and

(16) we are allowing for the presence of estimation error in the two measures.

Differently, the distributional hypothesis in (14) takes into account the fact that

agents aim at evaluating the expected value of a performance measure.

In order to determine the relevance of behavioural and rational choices, we

modify the density in (15) by adding a multiplicative factor τ to the dispersion,

leading to

µGSR = GSR(E(U∗(W̃ )))) + ǫ, ǫ ∼ N(0, τσ2), (17)

The coefficient τ can be interpreted as the reliability or uncertainty of ra-

tional (prior) expectations. The higher the τ the less reliable (more uncertain)

are the rational choices, and thus higher weight might be given to behavioural

elements. Conversely, the close is τ to zero, the lower is the uncertainty. By

construction, and given the τ affects a variance, this parameter can assume

values in the domain [0,∞].

The aggregation of rational and behavioural performance measures in a

Bayesian framework gives rise to a composite performance measure consistent

with (14) where mean and variance have the following expressions:

µp =
[

(τσ2)−1 + ω−2
]−1 [

(τσ2)−1GSR+ ω−2
Zγ

−
γ+,λ,β

]

(18)

and

σ2
p =

[

(τσ2)−1 + ω−2
]−1

. (19)
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Now, the aggregate expected measure, namely µp might be considered as the

quantity used, at the market level, to order or rank assets. As a consequence, we

might determine the role of behavioural choices through the composite measure,

by looking at the optimal allocation made by an agent which is deciding where

to invest his wealth across a set of risky assets ordered according to (18). In this

case, the allocations might be evaluated in terms of past performances, while

the impact of behavioural beliefs is determined by estimating the optimal τ level

within a specified criterion function.

As we already noticed, we take a simplified allocation choice and consider

an equally weighted investment strategy. Therefore, past performances can be

evaluated as the cumulated returns of an equally weighted portfolio in a given

time window, that is

rp =
1

m

t
∑

l=t−m+1

rp,l (20)

where rp,l is the time l return of the equally weighted portfolio and m rep-

resents the time range for the portfolio evaluation (from time t−m+1 to time

t). The portfolio is formed by the best performing equities according to (18).

Let us collect in the set At (τ) the M best assets across the K included in the

market. This index is a function of the parameter τ because, by changing τ the

asset ranks will be affected. Moreover, the set is also a function of time, given

that the impact of behavioural choices might change over time.7 Therefore,

portfolio returns are represented as

rp,l =
1

M

∑

j∈At(τ)

rj,l (21)

where rj,l is the return of asset j at time l; we stress that the index j

vary from 1 to K but only M values are included in the set At (τ). Given

the dependence on τ of the best performing asset set, the portfolio cumulated

return in (20) is also a function of τ . The optimal choice of τ is determined by

maximizing the portfolio returns, that is

max
τ

f (τ) =
1

m

t
∑

l=t−m+1

rp,l

s.t. rp,l =
1

k

∑

j∈At(τ)

rj,l

(22)

7Note that, in order to to simplify the notation, we avoid adding a time subscripts to the

parameter τ .
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The optimal value τ∗ provides the maximum cumulated return obtained by

an agent investing on a subset of the risky assets traded in the market and

taking decisions blending rational and behavioural choices. As a consequence,

the estimated τ∗ represents the relevance of behavioural choices, or, conversely,

the reliability on the rational beliefs.

In fact, a high value of τ∗ would imply that the rational investor should have

correct her action towards a behavioural direction. On the opposite, a low value

of τ∗ would imply that the investor should have remained on her prior rational

beliefs. The criterion function allows detecting which component, rational ver-

sus behavioural, had a larger influence on the market.

The proposed approach is intimately linked to the investment decisions taken

following the model introduced by Black and Litterman (1992).8 In fact, our

Bayesian combination is exactly equivalent to the Black and Litterman model

where the rational choices are the prior expectations on asset returns (the equi-

librium returns) and the behavioural choices plays the same role of the analysts

views. In our implementation, both the prior and the views are univariate.

Moreover, the methodology for the evaluation of optimal choices when a subset

of risky assets is selected from an investment universe, is similar to the one

adopted in Billio et al. (2012), in the framework of determining a composite

performance measure by weighted linear combination of standard performance

indices.

4 Empirical Analysis

4.1 The S&P 500 in 1962-2012

Generally, the stock market represents one of the most sensitive indicator for

the business cycle as pointed out by Siegel (1991). Moreover, using a bivariate

model with two regimes Hamilton and Lin (1998) have found that economic

recessions are the main factor which leads the fluctuations in the volatility of

the stock returns. Therefore, a focus on equities might allow the derivation of

relevant evidences on the relation between economic and financial cycles, and

on their association with agent’s behaviour.

Our reference market is given by the equities included in the S&P 500 index in

the period January 1962 to April 2012. The S&P 500 is a stock market index

8See He and Litterman (2002) for a detailed explanation of the model
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by Standard & Poor’s based on the 500 leading companies traded in the US.9

Consequently, we focus the analysis on the components of the S&P500 market

index across time.

The series of interest, the prices of the equities included in the index, have been

downloaded from CRSP/COMPUSTAT at a monthly frequency. Moreover, we

recover the US 3-Month Treasury Bill rates as a proxy used for the risk free

rate.

Figure 4 shows the log–level of the S&P500 for the considered period, the bands

in the plot represents the financial crisis according to Kindleberger and Aliber

(2005). Figure 5 reports the bands of economic recessions according to the Na-

tional Bureau of Economic Research (NBER). Tables 1 and 2 report the timing

of financial and economic crisis, respectively.

Looking at the plots, it is natural to observe a match between the local minima

in the log-index and the bands for the financial crisis. There is also a corre-

spondence in the economic recessions. For instance, during the recession in the

1969–70 (the post-Vietnam era) a lower peak is clearly observable in Figure 5.

This supports the validity of the financial market as a reliable indicator for the

state of the economy.10

Table 3 contains some descriptive statistics grouped by decades. The period

1991-2000 has shown a great expansion phase, as it can be seen on the average

returns. On the contrary, the last period from 2000-2012 has been the lowest

in term of average returns. The risk level of the last decade is comparable to

those observed in the range 1971-1990 where oil market shocks and the black

Monday took place.

4.2 The Model specification and Empirical Results

The model we propose has been applied on rolling windows of 60 monthly re-

turns in order to take into account the time-varying structure of the returns

series. To implement our model and estimate the optimal value τ⋆, at a given

time t we select from the 500 stocks included in the index only those with at

least 60 observations. We thus exclude those with a limited history where the

evaluation of both the rational and behavioural performance measures might

be characterised by a too large uncertainty. The variances of the performance

measures are obtained using a block bootstrap procedure, setting the block to

9Equities are included in the index on the basis of their market value. The index compo-

sition is regularly revised.
10Note that our study does not focus on real-time detection of changes in the economic and

financial cycles but rather on the association between them and the impact of behavioural

decisions in the financial market.

16



a dimension of 4. Such a choice allows preserving any form of temporal depen-

dence across the returns.11 Such a procedure is repeated for each point in time,

excluding the first five years, 1962-1969, which are needed to initialize the com-

putation. At the end, we obtain a time series of optimal values τ⋆t . Note that

for each utility function we recover a different sequence τ⋆t . We do not index

the sequences with the utility function as the latter will be always explicitly

indicated in the text. This also allows maintaining a simplified notation.

We filtered the optimized τ∗ using a local level model in a state space represen-

tation. This allows extracting the level’s signal component preserving its time

variation:12






τ∗t = µt + ǫt, ǫt ∼ N(0, σ2
ǫ )

µt+1 = µt + ξt, ξt ∼ N(0, σ2
ξ )

(23)

where µt is the unobserved level, ǫt is the observation disturbance and ξi,t is the

level disturbance a time t. Both disturbances are identically and independently

distributed according to a Gaussian density function. The estimated hyper-

parameters of the model, using the filtered τ∗t from the S-shaped utility function,

are ǫ̂1,t ∼ N(0, .4547) and ξ̂1,t ∼ N(0, .001678).

Figure 7 shows µt (henceforth, the filtered τ∗t ) including the economic recession

bands according NBER.

The first check we consider for the filtered τ∗t refers to the evaluation of the

significance of that quantity. To this end we perform a TOBIT regression on

the filtered τ∗t , by specifying the censored dependent variable in the model. We

thus set the lower bound equal to zero and check if the constant is significantly

different from zero in the model

µt = c+ ǫ. (24)

Table 4 reports the results for the regressions in decades and for the full sample.

The filtered τ∗t is statistically different from zero in all the sub-samples and

in the full sample. Other descriptive statistics are also included in the table.

Looking at the dynamic of the filtered τ∗t , see figures 4 and 5, it clearly emerges

that we have three local maxima that coincide with the three longest economic

recessions. The first is the oil crisis which corresponds to the highest value of

the filtered τ∗t . The second is the energy crisis which began with the Iranian

revolution. According to Labonte and Makinen (2002), one of the main reason

11The bootstrap procedure has been applied to the returns. The measures have been com-

puted in each iteration and then the variances have been obtained on the cross section of

simulated measures.
12We thus filter out the noise and focus on the signal. See Koopman et al. (2012) for further

details on the local level model.
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for this crisis was due to the FED’s monetary policy for the inflation control.

This energy crisis is often considered a ”Double Dip” recession with the previous

one (January 1980 - July 1980); we found an inflection point in correspondence

of this crisis in the series. In this regard, we found a similar result with the

crisis from December 1969 to November 1970.

The last two shortest recessions are very similar to each other: both at the

beginning of a decade (early-80s and early-90s) and both of the same length of

eight months. In these cases, our estimated behavioural factor does not provide

any particular pattern.

Finally, the third largest recession in the considered period is the sub-prime

crisis (2007-2009). It is worth noting that the level of the filtered τ∗t after the

recession starts to decay very slowly. Then it remains substantially high at the

begin of the European sovereign debt crisis.

As we might expect, we find the local minima in correspondence of booming

periods of the equity market index. For instance, the first minimum is located

just before the early-80s crisis (in the 1978) and the other is located just before

the subprime crisis.

In the 1991-2000 decade, the economy has experienced a period of a solid eco-

nomic growth; we found a relative low dynamic of the filtered τ∗t .

Figure 4 represents the estimated factor including the bands for the financial

crisis according to Kindleberger and Aliber (2005). Naturally, financial and eco-

nomics crisis are highly interrelated and interdependent. Except for the 1987

stock market crash, they just anticipate or follow each other in most of the cases.

Looking at the crisis, it is clearly observable a local minimum in the estimated

factor before the begin of the crisis and then a local maxima during the crisis.

As reported in Table (4), the period 1971-1980 and the period 1981-1990 contain

on average the highest value and the highest standard deviation for the filtered

τ∗t . Probably, this is due for the two recessions in each decade.

We then move to analyse the relation between the filtered τ∗t and the financial

market’s systemic component. Each optimal value of τ∗t is associated with a

selection of equities, those included in the portfolio returns in (21) evaluated

at the optimal value τ∗t . If the mixed selection and the extrapolation of the τ∗t

comes from two types of investors (weighted by the estimated mixing factor) it

reflects the systematic component in the market. Therefore, if this relation is

present, it is reliable to assume the presence of the two types of decision makers

in the market. As a consequence, the market returns should be explained by

the portfolio returns of this selection, that is the portfolio returns in (21).
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In this regards, we estimate the following model,

rm,t = c+ βrτ,t + e, (25)

where rm is the S&P 500’s return and rτ is the return of the aggregated selec-

tion according to the optimal τ∗t . Opposite to the CAPM model, the market

return represents the dependent variable in this model. That is, if we assume

a rational and behavioral investor in the market, the selection coming from the

mixture of these two agents should largely explain the market returns.

Hence, according to our assumption, the model should return an high value for

β and a constant close to zero. In the estimation, we use the equally-weighted

returns for the S&P 500 (the dependent variable) since the returns from the

selection are defined by the equally-weighted method.

Table 5 reports the estimated regression. The constant represents the risk pre-

mium which is slightly positive but close to zero. Economically, the result is

coherent to what we might expect. Moreover, a positive sign is consistent with

the efficiency of the market portfolio as shown in Sharpe (1966) and Fama

(1998), since the selection is a subset of the available assets in the market each

period. The β is significant at the 1% confidence level and has a value close to

0.90.

We perform a comparison also with the S&P 100 which includes the one hun-

dred most capitalized companies in the US market. In this case, we use the

value-weighted return series for the S&P 100 because of the short length of the

equally-weighted series. The series for the index has been downloaded from

Datastream and is available from January 1973; results are reported in Table 6.

The β is significant at 1% confidence interval and has now a value of 0.78.

The constant is not significant. A lower beta in this case is quite reasonable

for the different underlying market. In fact, some of the selected assets might

be included in the S&P500 but not in the S&P100. However, the risk premium

is not statistically different from zero and the β captures an high level of the

systematic risk.

The analysis is also performed considering the rational agent’s selection provided

by the generalized Sharpe ratio. If we expect a coexistence between the two

agents, the GSR-selection should capture a lower systematic component of the

market. That is, a lower beta in the estimated model (25). Table 7 reports

the results for the regression with the S&P 500 equally-weighted returns and

Table 8 reports the results for the S&P100. The β coefficients are 0.83 and 0.64

respectively. These results confirm that the selection provided by the aggregated

measure reflects an higher systematic part of the market with respect to the
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selection resulting by rational agent’s utility function. Again, it reasonable to

assume the two types of agents in the market given these results.

5 The behavioural component and the VIX

At this point, we want to test if the filtered τ∗t explains part of the market’s fear

expectations. Consequently, we use our estimated variable as an explanatory

variable of a market sentiment index.

In this regard, we consider the CBOE Volatility Index (VIX). The VIX is a

stock market volatility index introduced in the 1993 on the Chicago Board

Options Exchange (CBOE).13 It is also called the investor’s fear gauge, since

it is considered a measure of market expectations in the short-term period on

the S&P 500’s market (Whaley, 2000). 14 Thus, we consider the VIX the most

appropriate choice as dependent variable to test if the filtered τ∗t explains part

of the market expectations. In Figure 8 we plot the filtered τ∗ and the VIX.

In the regression, we use the estimated volatility of the S&P 500 as a control

variable for the contemporaneous volatility in the market.

We consider the following model for the VIX

V IXt = c+ β1τ
∗
t + β2h

1/2
t + ηt, (26)

where a second control variable is included. The quantity h
1/2
t is the estimated

conditional for the S&P500 returns and represents a statistical expectation of the

market volatility. In the model for the index returns we consider a generalized

error distribution (GED) and fit the APARCH(P,O,Q) model by Ding et al.

(1993). We select the simplest specification setting all orders to 1. We thus fit

a APARCH(1,1,1) model obtaining the following estimates:















xt = .0019
(.0051)

+ h
1/2
t ǫt,

hδ
t = .0256

(.0250)
+ .1035

(.0206)

(

|ǫt−1| − .8519
(.1815)

ǫt−1

)δ

+ .8015
(.0473)

σδ
t−1

(27)

where δ̂ = .5246
(.2900)

and κ̂ = 1.6149
(.1960)

. See Ding et al. (1993) for additional details

on the model.

The regression’s results for the equation (26) are reported in Table 9. Both the

explanatory variables are significant at 1% level of confidence. The filtered τ∗t

13See CBOE (2003).
14In the 2003, a new methodology for the volatility index has been proposed. It has been

calculated on the S&P500 index instead of the S&P 100 index. The Black and Scholes (1973)

model has been replaced by fair value of future variance.15
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coefficient is positive and equal to 0.3106.

Consequently, the filtered τ∗t explains part of the VIX which is not related to

the pure market volatility. We are thus capturing a dynamic element which is

directly related to the market expectations.

Looking at the utility functions, the difference on preferences among the agents

arises in the domain of losses: it is concave in the CRRA utility and convex in

the S-shaped utility function. This suggests that we should expect to observe a

different behavior of the agents during the period of crisis. Thus, when there is

high volatility in the market.

In this perspective, τ captures the divergence in behavior between the two agents

which is likely to emerge during turbulent financial periods.

6 Robustness Check

To check the consistency of our framework, we consider a different behavioral

utility function.

In particular, an utility function which behaves in the opposite way of the

behavioral S-shaped utility. Therefore, we consider an inverse-S-shaped utility

function with no loss-aversion that is concave in the domain of losses (risk

adverse) and convex in the gains (risk seeking).

Thus, as robustness check, we replicate our analysis considering the performance

measure underlying this inverse-S-shaped utility function: the ratio proposed

by Tibiletti and Farinelli (2003). In the model, we define this utility function

following Zakamouline and Koekebakker (2009b).16

The estimation for the local level model in equation (23) for the filtered τ∗t are

ǫ̂2,t ∼ NID(0, .1080) and ξ̂2,t ∼ NID(0, .04454).

Table 10 reports the estimates in decades and for all the sample. Also in this

case, the filtered τ∗t for this utility function is statistically significant from zero

in all the sub-samples and in the entire sample. The descriptive statistics for

the estimated factor are reported in Table 10.

We check also if the selection captures the systematic part of the market. The

model (25) is analysed with the S&P500 and the S&P100. The results are

16In order to obtain this utility function, the parameters are set to:






























γ+ = −α,

γ− = β

1+ = 0

1− = 0



















λ = 1.5

α = 1.5

β = 2.
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very similar to the S-shaped utility function case and confirms that also in this

case, the selection reflect a systematic component. The estimated models are

reported in Table 11 and in Table 12.

The most interesting part is the analysis of the relationship with the VIX in

model (26). The results of the estimation are reported in Table 13. In this case,

we have a negative relationship with the filtered τ∗t which is consistent to what

we should expect looking at the results of the S-shaped utility function.

7 Conclusions

Identifying and measuring the behavioral component in financial investment

decisions is an open question for economists. For instance, there is a vivid em-

pirical literature that studies how the relationship between investment choices

and agents’ risk attitude is mediated by behavioral components and changes

overtime with the economic cycle. Guiso, Sapienza and Zingales (2013) elicit

risk preferences using hypothetical lotteries in a repeated survey of Italian bank’s

clients and find that risk aversion increases substantially after the 2008 finan-

cial crises. Similarly, in a controlled experiment involving professionals, Cohn,

Fehr and Maréchal (2012) found that, compared to expansion phases, financial

crises trigger negative emotions and diminish risk taking choices in incentivized

lotteries. Together, these findings are difficult to reconcile with the predictions

of the Prospect Theory as they suggest that risk aversion is countercyclical. In

this paper, we contribute to this flourishing literature by proposing a Bayesian

mixture model to estimate the relative weight of the behavioral component of

the financial market with respect to the benchmark SEUT setting. Rather than

relying on experimental and survey data and with the intent of reducing the

relevance of sampling and measurement errors, our analysis is based on real

financial data. In particular, we use monthly data on the five hundred compo-

nents of the S&P 500 index from January 1962 to April 2012. In line with the

abovementioned literature, we detect a significant and time varying behavioral

component that reaches its peaks during economic and financial crises. However,

alike these studies, when using the mixture model to account for financial ex-

pectations and investors’ sentiments, we find estimates from the mixture model

based on a S-shaped value function with pro-cyclical risk aversion to better cor-

relate with the VIX index than those implied by a reverse-S-shaped specification

with countercyclical risk aversion. Our results are robust to changes in both the

parameterization of the two behavioral utility functions and the definition of

the set of the relevant assets used in the estimation procedure. In addition, our
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methodology is very flexible and can be easily modified to adapt to alternative

behavioral utility functions.
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Crisis Start date End Date

The 1973 Oil Crisis 29-Oct-73 03-Oct-74

The 1987 Stock Market Crash 19-Oct-87 30-Dec-88

The 2000 Dotcom Bubble Burst 10-Mar-00 16-Apr-01

The 2001-9-11 Terrorist Attack 11-Sep-01 09-Oct-02

The Subprime Crisis 03-Dec-07 09-Mar-09

Table 1: The table provides the crisis list for the U.S. market according Kindle-

berger and Aliber (2005)

.

Economic Recessions

Quarterly dates are in parentheses DURATION IN MONTHS

December 1969(IV) November 1970 (IV) 11

November 1973(IV) March 1975 (I) 16

January 1980(I) July 1980 (III) 6

July 1981(III) November 1982 (IV) 16

July 1990(III) March 1991(I) 8

March 2001(I) November 2001 (IV) 8

December 2007 (IV) June 2009 (II) 18

Table 2: The table provides the crisis list for the U.S. economic recessions

according NBER available at http://www.nber.org/cycles.html.

Period 1962-1970 1971-1980 1981-1990 1991-2000 2001-2012 All-Sample

Mean 0.0035 0.0043 0.0086 0.0124 0.0015 0.0060

Std 0.0384 0.0457 0.0474 0.0385 0.0466 0.0437

Skewness -0.2874 0.1588 -0.6839 -0.5130 -0.5711 -0.4108

Kurtosis 2.9520 4.2453 6.5393 4.4303 3.7890 4.7155

Min -0.0905 -0.1193 -0.2176 -0.1458 -0.1694 -0.2176

Max 0.1016 0.1630 0.1318 0.1116 0.1077 0.1630

Table 3: Descriptive statistics for the S&P500 index returns for the period

January 1962 - April 2012.
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year 1962-1970 1971-1980 1981-1990 1991-2000 2001-2012 All-Sample

c 1.0038 1.3851 1.1955 1.0109 1.0388 1.1408

s.e 0.0665 0.1543 0.1236 0.0266 0.0762 0.0303

pValue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Skewness -0.0696 0.0503 0.5803 0.0002 0.0308 1.0816

Kurtosis 2.1024 1.8382 1.7605 1.9997 1.8031 3.2658

Min 0.8869 1.1180 1.0632 0.9636 0.9127 0.8869

Max 1.1178 1.6505 1.4258 1.0632 1.1619 1.6505

Table 4: Results for the TOBIT regression and the descriptive statistics for the

filtered τ for the S-shaped utility function in different periods.

Estimate SE tStat pValue

(Intercept) 0.0037 0.0009 4.0066 0.0001

rτ 0.9049 0.0175 51.7944 0.0000

R2 0.8322

R̄2 0.8319 F-test 2682.6638 0.0000

Table 5: Regression where the dependent variable is the S&P500 equally

weighted return and the explicative variable is return from the selection of the

aggregated measure according τ∗ for each period.

Estimate SE tStat pValue

(Intercept) -0.0001 0.0009 -0.1177 0.9063

rτ 0.7830 0.0172 45.4440 0.0000

R2 0.8146

R̄2 0.8142 F-test 2065.1593 0.0000

Table 6: Regression where the dependent variable is the S&P100 value weighted

return and the explicative variable is return from the selection of the aggregated

measure according τ∗ for each period.

Estimate SE tStat pValue

(Intercept) 0.0025 0.0007 3.4410 0.0006

rGSR 0.8339 0.0121 68.9244 0.0000

R2 0.8978

R̄2 0.8976 F-test 4750.5689 0.0000

Table 7: Regression where the dependent variable is the S&P500 value weighted

return and the explicative variable is return from the selection of the Generalized

Sharpe Ratio for each period.
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Estimate SE tStat pValue

(Intercept) -0.0004 0.0011 -0.3958 0.6924

rGSR 0.6476 0.0182 35.6680 0.0000

R2 0.8108

R̄2 0.8104 F-test 1272.2073 0.0000

Table 8: Regression where the dependent variable is the S&P100 value weighted

return and the explicative variable is return from the selection of the Generalized

Sharpe Ratio for each period.

Estimated Robust s.e tStat pValue R2
p

(Intercept) -0.3022 0.0589 -5.1339 0.0000

τ∗t 0.3106 0.0621 4.9979 0.0000 0.0908

h
1/2
t 1.2459 0.0954 13.0639 0.0000 0.4070

R2 0.5944

R̄2 0.5913 F-test 194.15 0.0000

Table 9: The filtered τ∗ is from the behavioral utility function Type 1.

year 1962-1970 1971-1980 1981-1990 1991-2000 2001-2012 All-Sample

Mean 0.7781 1.7586 0.5576 0.3068 0.5613 0.7876

s.e 0.1039 0.1036 0.0304 0.0211 0.0270 0.0352

pValue 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Skewness 1.1849 0.2916 1.9085 0.8835 1.4800 2.0073

Kurtosis 2.8534 1.7187 6.4377 2.4280 5.2108 6.4150

Min 0.1879 0.1810 0.1422 0.0476 0.2026 0.0476

Max 2.4935 4.0520 1.6790 0.8266 1.6969 4.0520

Table 10: Results for the TOBIT regression and the descriptive statistics for

the filtered τ for the inverse S-shaped utility function in different periods.

Estimate SE tStat pValue

(Intercept) 0.0035 0.0009 3.8538 0.0001

rτ 0.9213 0.0174 52.8160 0.0000

R2 0.8376

R̄2 0.8373 F-test 2789.5345 0.0000

Table 11: Regression where the dependent variable is the S&P500 equally

weighted return and the explicative variable is return from the selection of the

aggregated measure according τ∗ in type 2 utility function for each period.
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Estimate SE tStat pValue

(Intercept) -0.0002 0.0009 -0.2621 0.7933

rτ 0.7951 0.0177 44.8735 0.0000

R2 0.8108

R̄2 0.8104 F-test 2013.6313 0.0000

Table 12: Regression where the dependent variable is the S&P500 equally

weighted return and the explicative variable is return from the selection of the

aggregated measure according τ∗ in type 2 utility function for each period.

Estimated Robust s.e tStat pValue R2
p

(Intercept) -0.0247 0.0134 -1.8486 0.0725

τ∗t -0.0263 0.0121 -2.1693 0.0384 0.0164

h
1/2
t 1.6015 0.1040 15.3994 0.0000 0.5119

R2 0.5612

R̄2 0.5579 F-test 169.45 0.0000

Table 13: The filtered τ∗ is from the behavioral utility function Type 2.
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Figure 1: Negative exponential utility function with constant absolute risk aver-

sion (CARA). λ is set equal to 1.5.
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Figure 2: Type 1: Behavioral utility function similar to Kahneman and Tversky

(1979).

Figure 3: Type 2: Behavioral utility function concave on the domain of losses

and convex in the domain of gains.

31



Figure 4: Log–level of the S&P500 index from January 1962 to April 2012 with

bands for financial crisis. Source: Kindleberger and Aliber (2005)).

Figure 5: Log–level of the S&P500 index from January 1962 to April 2012 with

bands for Economic Recessions. Source: NBER.
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Figure 6: The filtered τ∗. The bands represent the Economic Recessions ac-

cording NBER.

Figure 7: The filtered τ∗. The bands represent the Financial Crisis in the US

based on Kindleberger and Aliber (2005).
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Figure 8: Vix (solid) and the filtered τ∗ (dotted) from the utility function Type

1.

Figure 9: Vix (solid) and the filtered τ∗ (dotted) from the utility function Type

2.

34



CRRA utility

(rational investor)

S-shaped Behavioral utility

(behavioral investor)

Generalized Sharpe-ratio

(Prior)

Z-ratio

(Conditional)

The Market

(Posterior)

Figure 10: The Bayesian model which combines the two perspectives of the

agents.
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